Secondary One Mathematics: An Integrated Approach Module 7 Connecting Algebra and Geometry

By

The Mathematics Vision Project:

Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius www.mathematicsvisionproject.org

In partnership with the Utah State Office of Education

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

Module 7 – Connecting Algebra and Geometry

Classroom Task: 7.1 Go the Distance- A Develop Understanding Task

Use coordinates to find distances and determine the perimeter of geometric shapes **(G.GPE.7)**

Ready, Set, Go Homework: Connecting Algebra and Geometry 7.1

Classroom Task: 7.2 Slippery Slopes – A Solidify Understanding Task *Prove slope criteria for parallel and perpendicular lines* **(G.GPE.5) Ready, Set, Go Homework:** Connecting Algebra and Geometry 7.2

Classroom Task: 7.3 Prove It! – A Solidify Understanding Task *Use coordinates to algebraically prove geometric theorems* **(G.GPE.4) Ready, Set, Go Homework:** Connecting Algebra and Geometry 7.3

Classroom Task: 7.4 Training Day– A Solidify Understanding Task

Write the equation f(t) = m(t) + k by comparing parallel lines and finding k (F.BF.3, F.BF.1, F.IF.9)

Ready, Set, Go Homework: Connecting Algebra and Geometry 7.4

Classroom Task: 7.5 Training Day Part II – A Practice Understanding Task Determine the transformation from one function to another **(F.BF.3, F.BF.1, F.IF.9)**

Ready, Set, Go Homework: Connecting Algebra and Geometry 7.5

Classroom Task: 7.6 Shifting Functions – A Practice Understanding Task

Translating linear and exponential functions using multiple representations (F.BF.3, F.BF.1, F.IF.9)

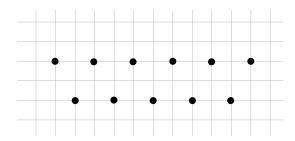
Ready, Set, Go Homework: Connecting Algebra and Geometry 7.6

7.1 Go the Distance

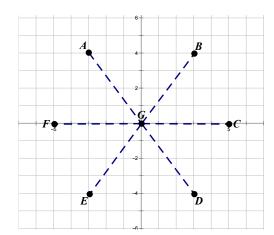
A Develop Understanding Task

The performances of the Podunk High School drill team are very popular during half-time at the school's football and basketball games. When the Podunk High School drill team choreographs the dance moves that they will do on the football field, they lay out their positions on a grid like the one below:

http://www.flickr.com/photos/briemckinneyxo/



In one of their dances, they plan to make patterns holding long, wide ribbons that will span from one girl in the middle to six other girls. On the grid, their pattern looks like this:



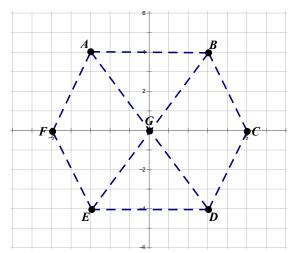
© 2012 Mathematics Vision Project | Mold VP

The question the girls have is how long to make the ribbons. Some girls think that the ribbon from Gabriela (G) to Courtney (C) will be shorter than the one from Gabriela (G) to Brittney (B).

1. How long does each ribbon need to be?

2. Explain how you found the length of each ribbon.

When they have finished with the ribbons in this position, they are considering using them to form a new pattern like this:

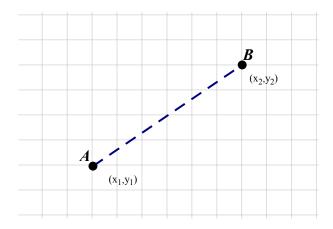


3. Will the ribbons they used in the previous pattern be long enough to go between Britney (B) and Courtney (C) in the new pattern? Explain your answer.

© 2012 Mathematics Vision Project | M ${f V}$ P

Gabriela notices that the calculations she is making for the length of the ribbons reminds her of math class. She says to the group, "Hey, I wonder if there is a process that we could use like what we have been doing to find the distance between any two points on the grid." She decides to think about it like this:

"I'm going to start with two points and draw the line between them that represents the distance that I'm looking for. Since these two points could be anywhere, I named them A (x_1,y_1) and B (x_2,y_2) . Hmmmmm... when I figured the length of the ribbons, what did I do next?"



4. Think back on the process you used to find the length of the ribbon and write down your steps here, using points A and B.

- 5. Use the process you came up with in #4 to find the distance between two points located at (-1, 5) and (2, -6)
- 6. Use you process to find the perimeter of the hexagon pattern shown in #3.

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license

7.1 Go the Distance – Teacher Notes

A Develop Understanding Task

Note to Teachers: Calculators should be available for this task.

Purpose: The purpose of this task is to develop the distance formula, based upon students' understanding of the Pythagorean theorem. In the task, students are asked to calculate distances between points using triangles, and then to formalize the process to the distance formula. At the end of the task, students will use the distance formula to find the perimeter of a hexagon.

Core Standards Focus:

G. GPE Use coordinates to prove simple geometric theorems algebraically.

G.GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

Related Standards:

G.GPE.4. Use coordinates to prove simple geometric theorems algebraically.

Launch (Whole Class):

Begin the task by ensuring that student understand the problem situation. Project the drawing in #1 and ask students which ribbon looks longer, \overline{GB} or \overline{GC} . Ask how they can test their claims. Some students may suggest using the Pythagorean Theorem to find the length of GB. Ask what they would need to use the Pythagorean Theorem. At this point, set students to work on the task.

Explore (Small Group):

During the exploration period, watch for students that are stuck on the first part of the problem. You may ask them to draw the triangle that will help them to use the Pythagorean Theorem and how they might find the length of the legs of the triangle so they can find the hypotenuse. As you monitor student thinking on #3, watch for students who are noticing how to find the length of the legs of the triangle when it has been moved away from the origin. Look for students that have written a good step-by-step procedure for #4. It will probably be difficult for them to use the symbols appropriately, so watch for words that appropriate describe the procedure.

Discuss (Whole Class):

Start the discussion by having a group show how they found the length of \overline{BC} in problem #3. Move next to #4 and have a group that has written a step by step procedure. Try walking through the

© 2012 Mathematics Vision Project | Mold VP

group's procedure with the numbers from problem #3 and see if it gives the appropriate answer. If necessary, work with the class to modify the procedure so that the list of steps is correct. Once the steps are outlined in words, go through the steps using points A (x_1,y_1) and B (x_2,y_2) and formalize the procedures with the symbols. An example:

Steps in words	Steps in symbols
Find the length of the horizontal leg of the	$x_2 - x_1$
triangle	
Find the length of the vertical leg of the triangle	<i>y</i> ₂ - <i>y</i> ₁
Use the Pythagorean Theorem to write an	
equation	
Simplify the left side of the equation	$(x_2 - x_1)^2 + (y_2 - y_1)^2 = c^2$
Take the square root of both sides of the	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{c^2}$
equation	V (42 31) 1 (72 71) V
Simplify	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = c$ (c being the
	desired distance)

After going through this process, you should end with the distance formula. Apply the formula using the points in #5.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 7.1

Ready, Set, Go!

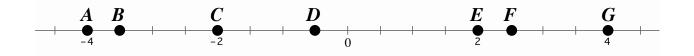
http://www.flickr.com/photos/briemckinneyxo/

Ready

Topic: Finding the distance between two points

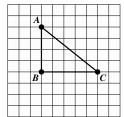
Use the number line to find the distance between the given points. (The notation AB means the distance between points A and B.)

- 1. AE
- 2. CF
- 3. GB
- 4. CA
- 5. BF
- 6. EG



7. Describe a way to find the distance between two points on a number line without counting the spaces.

8.



- a. Find AB
- b. Find BC
- c. Find AC
- 9. Why is it easier to find the distance between points A and B and points B and C than it is to find the distance between A and C?
- 10. Explain how to find the distance between points A and C.

© 2012 Mathematics Vision Project| Mold VP

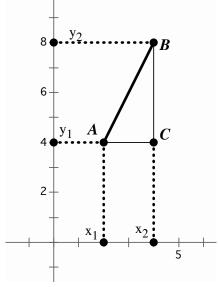
Connecting Algebra and Geometry

Set

Name:

Topic: Slope triangles and the distance formula.

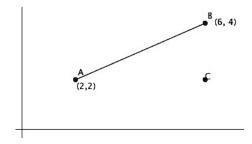
Triangle ABC is a slope triangle for the line segment AB where BC is the rise and AC is the run. Notice that the length of segment BC has a corresponding length on the y-axis and the length of AC has a corresponding length on the x-axis. The slope formula is written as $m = \frac{y_2 - y_1}{x_2 - x_2}$ where m is the slope.



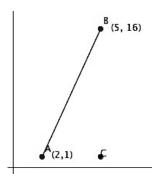
- 11a. What does the value $(y_2 y_1)$ tell you?
 - b. What does the value $(x_2 x_1)$ tell you?

In the previous unit you found the length of a slanted line segment by drawing the slope triangle and performing the Pythagorean Theorem. In this exercise try to develop a more efficient method of finding the length of a line segment by using the meaning of $(y_2 - y_1)$ and $(x_2 - x_1)$ combined with the Pythagorean Theorem.

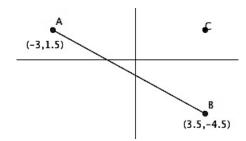
12. Find AB.



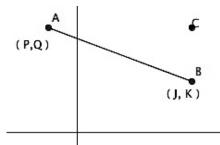
13. Find AB.



14. Find AB.



15. Find AB.



 $^{\circ}$ 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

Name: Connecting Algebra and Geometry

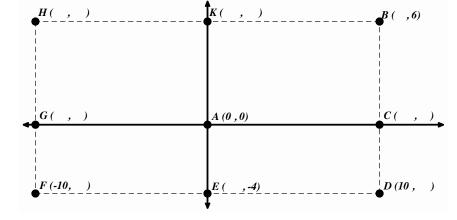
Go Topic: Rectangular coordinates

Use the given information to fill in the missing coordinates. Then find the length of the indicated

line segment.

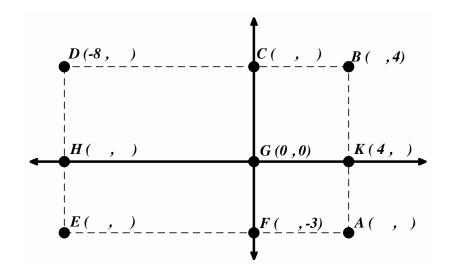
16a. Find HB

b. Find BD



17a. Find DB

b. Find CF



Need Help? Check out these related videos:

 $\underline{http://www.khanacademy.org/math/algebra/ck12-algebra-1/v/the-coordinate-plane}$

http://www.khanacademy.org/math/algebra/ck12-algebra-1/v/distance-formula

© 2012 Mathematics Vision Project| Mold VP

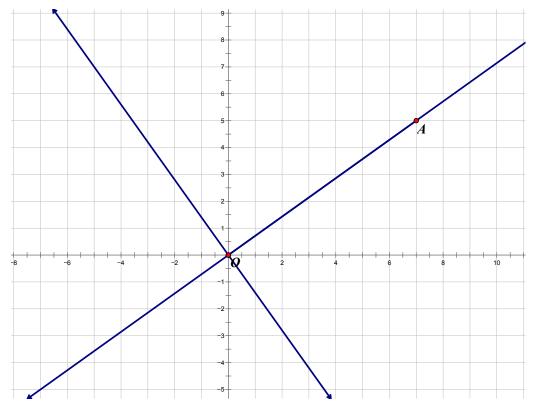
In partnership with the Utah State Office of Education

7.2 Slippery Slopes

A Solidify Understanding Task

© 2012 www.flickr.com/photos/clockwerks

While working on "Is It Right?" in the previous module you looked at several examples that lead to the conclusion that the slopes of perpendicular lines are negative reciprocals. Your work here is to formalize this work into a proof. Let's start by thinking about two perpendicular lines that intersect at the origin, like these:



- 1. Start by drawing a right triangle with the segment \overline{OA} as the hypotenuse. These are often called slope triangles. Based on the slope triangle that you have drawn, what is the slope of \overrightarrow{OA} ?
- 2. Now, rotate the slope triangle 90° about the origin. What are the coordinates of the image of point A?

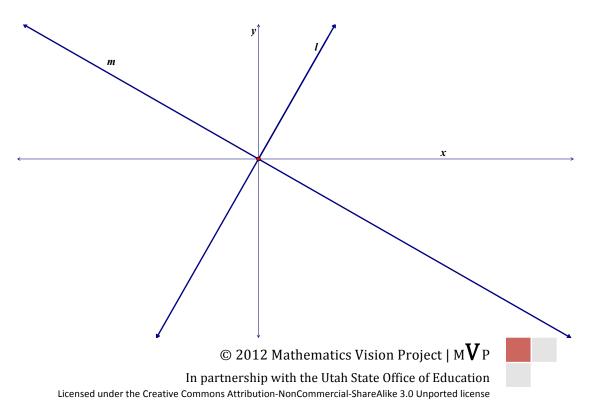
 $^{\circ}$ 2012 Mathematics Vision Project | M ${f V}$ P

In partnership with the Utah State Office of Education

- 3. Using this new point, A', draw a slope triangle with hypotenuse $\overrightarrow{OA'}$. Based on the slope triangle, what is the slope of the line $\overrightarrow{OA'}$?
- 4. What is the relationship between these two slopes? How do you know?
- 5. Is the relationship changed if the two lines are translated so that the intersection is at (-5, 7)?

How do you know?

To prove a theorem, we need to demonstrate that the property holds for any pair of perpendicular lines, not just a few specific examples. It is often done by drawing a very similar picture to the examples we have tried, but using variables instead of numbers. Using variables represents the idea that it doesn't matter which numbers we use, the relationship stays the same. Let's try that strategy with this theorem.



- Lines *l* and *m* are constructed to be perpendicular.
- Start by labeling a point P on the line *l*.
- Label the coordinates of P.
- Draw the slope triangle from point P.
- Label the lengths of the sides of the slope triangle.
- 6. What is the slope of line *l*?

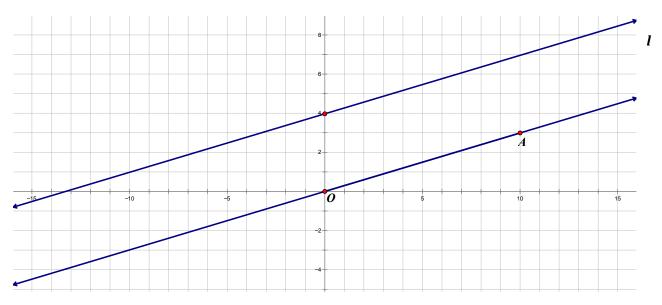
Rotate point P 90° about the origin, label it P' and mark it on line m. What are the coordinates of P'

- 7. Draw the slope triangle from point P'. What are the lengths of the sides of the slope triangle? How do you know?
- 8. What is the slope of line *m*?
- 9. What is the relationship between the slopes of line *l* and line *m*? How do you know?
- 10. Is the relationship between the slopes changed if the intersection between line l and line mis translated to another location? How do you know?
- 11. Is the relationship between the slopes changed if lines *l* and *m* are rotated?
- 12. How do these steps demonstrate that the slopes of perpendicular lines are negative reciprocals for any pair of perpendicular lines?

© 2012 Mathematics Vision Project | M**V** P

Think now about parallel lines like the ones below.

Draw the slope triangle from point A. What is the slope of \overrightarrow{OA} ?

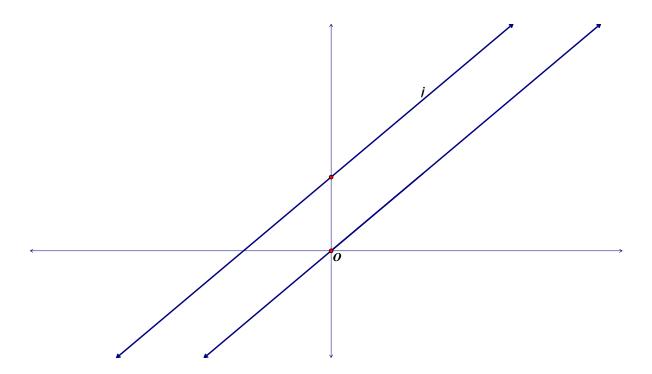


What translation(s) maps the slope triangle with hypotenuse \overline{OA} onto line *l*?

What must be true about the slope of line *l*? Why?

Now you're going to try to use this example to develop a proof, like you did with the perpendicular lines. Here are two lines that have been constructed to be parallel.

© 2012 Mathematics Vision Project | Mold VP



Show how you know that these two parallel lines have the same slope and explain why this proves that all parallel lines have the same slope.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P

 $In\ partnership\ with\ the\ Utah\ State\ Office\ of\ Education$ Licensed under the Creative Commons\ Attribution-NonCommercial-ShareAlike\ 3.0\ Unported\ license

7.2 Slippery Slopes – Teacher Notes

A Solidify Understanding Task

Purpose: The purpose of this task is to prove that parallel lines have equal slopes and that the slopes of perpendicular lines are negative reciprocals. Students have used these theorems previously, without proof. The proofs use the ideas of slope triangles, rotations, and translations. Both proofs are preceded by a specific case that demonstrates the idea before students are asked to follow the logic using variables and thinking more generally.

Core Standards Focus:

G. GPE Use coordinates to prove simple geometric theorems algebraically.

G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Related Standards: G.CO.4, G.CO.5

Launch (Whole Class):

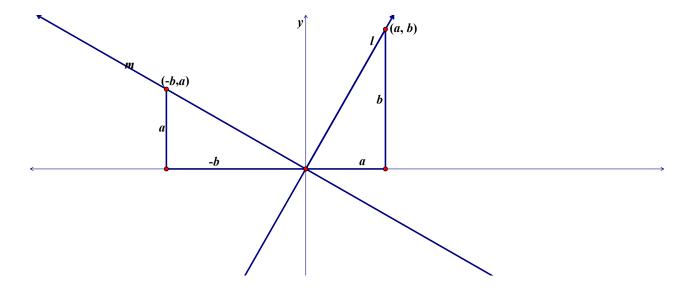
If students haven't been using the term "slope triangle", start the discussion with a brief demonstration of slope triangles and how they show the slope of the line. Students should be familiar with performing a 90 degree rotation from the previous module, so begin the task by having students work individually on questions 1, 2, 3, and 4. When most students have drawn a conclusion for #4, have a discussion of how they know the two lines are perpendicular. Since the purpose is to demonstrate that perpendicular lines have slopes that are negative reciprocals, emphasize that the reason that we know that the lines are perpendicular is that they were constructed based upon a 90 degree rotation.

Explore (Small Group):

The proof that the slopes of perpendicular lines are negative reciprocals follows the same pattern as the example given in the previous problem. Monitor students as they work, allowing them to select a point, label the coordinates and then the sides of the slope triangles. Refer students back to the previous problem, asking them to generalize the steps symbolically if they are stuck. When students are finished with questions 6-12, discuss the proof as a whole group and then have students complete the task.

Discuss (Whole Class):

The setup for the proof is below:



The slope of line l is $\frac{b}{a}$ and the slope of line m is $\frac{a}{-b}$ or $-\frac{a}{b}$. The product of the two slopes is -1, therefore they are negative reciprocals. If the lines are translated so that the intersection is not at the origin, the slope triangles will remain the same. Discuss with the class how questions 6-12 help us to consider all the possible cases, which is necessary in a proof.

After students have finished the task, go through the brief proof that the slopes of parallel lines are equal.

Aligned Ready, Set, Go: Connecting Algebra and Geometry 7.2

Ready, Set, Go!

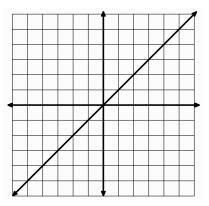
© 2012 www.flickr.com/photos/clockwerks

Ready

Topic: Graphing lines.

The graph at the right is of the line f(x) = x.

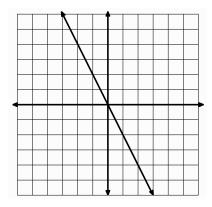
- 1a. On the same grid, graph a parallel line that is 3 units above it.
- b. Write the equation of the new line.
- c. Write the y-intercept of the new line as an ordered pair.
- d. Write the x-intercept of the new line as an ordered pair.
- e. Write the equation of the new line in point-slope form using the y-intercept.



- f. Write the equation of the new line in point-slope form using the x-intercept.
- g. Explain in what way the equations are the same and in what way they are different.

The graph at the right is of the line f(x) = -2x.

- 2a. On the same grid, graph a parallel line that is 4 units below it.
- b. Write the equation of the new line.
- c. Write the y-intercept of the new line as an ordered pair.
- d. Write the x-intercept as an ordered pair.
- e. Write the equation of the new line in point-slope form using the y-intercept



- f. Write the equation of the new line in point-slope form using the x-intercept.
- g. Explain in what way the equations are the same and in what way they are different.

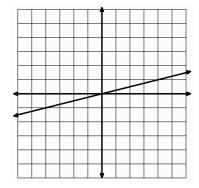
© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

The graph at the right is of $f(x) = \frac{1}{4}x$

- 3a. Graph a parallel line 2 units below.
- b. Write the equation of the new line.
- c. Write the y-intercept as an ordered pair.
- d. Write the x-intercept as an ordered pair.



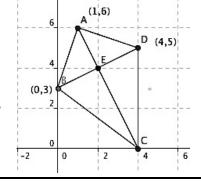
- e. Write the equation of the new line in point-slope form using the y-intercept
- f. Write the equation of the new line in point-slope form using the x-intercept
- g. Explain in what way the equations are the same and in what way they are different.

Set

Topic: Verifying and Proving Geometric Relationships

The quadrilateral at the right is called a **kite**.

Complete the mathematical statements about the kite using the given symbols. Prove each statement algebraically. (A symbol may be used more than once.)



Proof

4. \overline{BC} _____ \overline{DC} ____

5. \overline{BD} ______AC _____

6. \overline{AB} _____ \overline{BC} ____

Connecting Algebra and Geometry

- 7. Δ*ABC* ____ Δ*ADC*
- 8. \overline{BE} \overline{ED}
- 9. \overline{AE} \overline{ED}
- $10.\overline{AC}$ \overline{BD}

Go

Topic: Writing equations of lines.

Write the equation of the line in standard form using the given information.

11. Slope: -¼ point (12, 5)

12. A (11, -3), B (6, 2)

- 13. x-intercept: -2, y-intercept: -3 14. All x values are -7, y can be anything
- 15. Slope: ½ x-intercept: 5
- 16. E (-10, 17), G (13, 17)

Need Help? Check out these related videos:

http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/v/graphing-using-x-and-y-intercepts

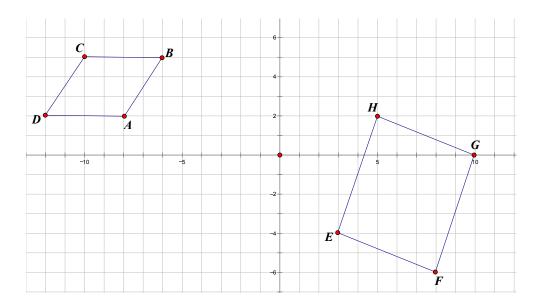
© 2012 Mathematics Vision Project| Mold VP

7.3 Prove It!

A Solidify Understanding Task

In this task you need to use all the things you know about quadrilaterals, distance, and slope to prove that the shapes are parallelograms, rectangles, rhombi, or squares. Be systematic and be sure that you give all the evidence necessary to verify your claim.

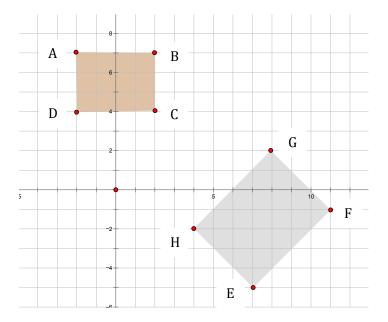
www.flickr.com/photos/safari_vacation



Is ABCD a parallelogram? Explain how you know.

Is EFGH a parallelogram? Explain how you know.

© 2012 Mathematics Vision Project | Mold VP

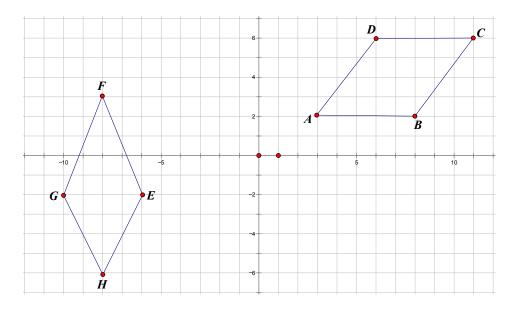


Is ABCD a rectangle? Explain how you know.

Is EFGH a rectangle? Explain how you know.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P

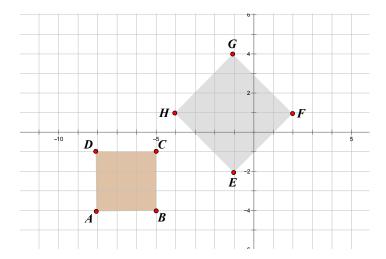
In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license



Is ABCD a rhombus? Explain how you know.

Is EFGH a rhombus? Explain how you know.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P



Is ABCD a square? Explain how you know.

Is EFGH a square? Explain how you know.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P

7.3 Prove It! – Teacher Notes

A Solidify Understanding Task

Purpose:

The purpose of this task is to solidify student understanding of quadrilaterals and to connect their understanding of geometry and algebra. In the task they will use slopes and distance to show that particular quadrilaterals are parallelograms, rectangles, rhombi or squares. This task will also strengthen student understanding of justification and proof, and the need to put forth a complete argument based upon sound mathematical reasoning.

Core Standards Focus:

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle.

Related Standards: G.GPE.5, G.GPE.7

Launch (Whole Class):

Launch the task with a discussion of what students know about the properties of quadrilaterals, for instance that a rhombus has two pairs of parallel sides (making it a parallelogram), congruent sides, and perpendicular diagonals. Discuss what you would need to show to prove a claim that a figure is a particular quadrilateral. For instance, it is not enough to show that a shape is a rhombus by showing that the two pairs of sides are parallel, but it would be enough to show that the diagonals are perpendicular. Why?

Explore (Small Group):

Monitor students as they work. It may be helpful to recognize that each set of problems is set up so there is a simple case and a more complicated case. The simple case is designed to help students get ideas for how to prove the more complicated case. Keep track of the various approaches that students use to verify their claims and press them to organize their work so that it communicates to an outside observer. Students should be showing sides or diagonals are parallel or perpendicular using the slope properties, and the distance formula to show that sides or diagonals are congruent. You may also see students try to show one figure to be a particular quadrilateral and then use transformations to show that the second figure is the same type, particularly in the case of the squares. Select one group of students that have articulated a clear argument for each type of quadrilateral. Be sure to also select a variety of approaches so that students see several methods in the discussion.

Discuss (Whole Class):

The discussion should proceed in the same order as the task, with different groups demonstrating their strategies for one parallelogram, one rectangle, one rhombus, and one square. Select the shape that does not have sides that on a grid line, so that students are demonstrating the more challenging cases. One recommended sequence for the discussion would be:

- 1. Parallelogram EFGH demonstrated by showing two pairs of parallel sides using slopes.
- 2. Rectangle EFGH demonstrated by using the distance formula to show that the diagonals are congruent.
- 3. Showing that quadrilateral EFGH is not a rhombus because the sides are not congruent.
- 4. Square EFGH demonstrated using a translation and dilation of square ABCD. (They must demonstrate that ABCD is a square before using this strategy.)

Aligned Ready, Set, Go: Connecting Algebra and Geometry 7.3

Ready, Set, Go!

www.flickr.com/photos/safari_vacation

Ready

Topic: Tables of value

Find the value of f(x) for the given domain. Write x and f(x) as an ordered pair.

1.
$$f(x) = 3x - 2$$

X	f(x)	(x,f(x))
-2		
-1		
0		
1		
2		

2.
$$f(x) = x^2$$

X	f(x)	(x,f(x))
-2		
-1		
0		
1		
2		

3.
$$f(x) = 5^x$$

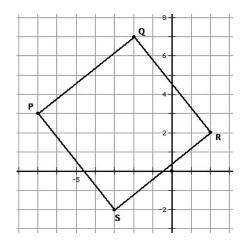
X	f(x)	(x,f(x))
-2		
-1		
0		
1		
2		

Set

Topic: Characteristics of rectangles and squares

4a. Is the figure below a rectangle? (Justify your answer)

b. Is the figure a square? (Justify your answer)



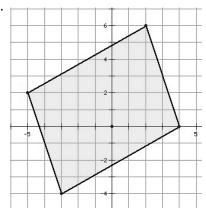
© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

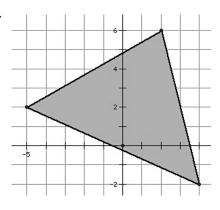
Go

Find the perimeter of each figure below. Round to the nearest hundredth.

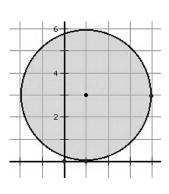
5.



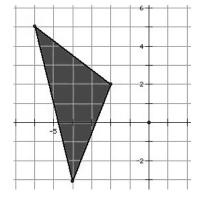
6.



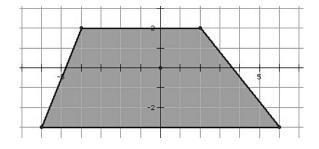
7.



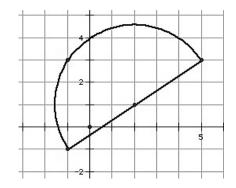
8.



9.



10.



Need Help? Check out these related videos:

 $\underline{http://www.khanacademy.org/math/geometry/basic-geometry/v/perimeter-and-area-of-a-non-standard-polygon}$

 $\underline{http://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/v/distance-formula}$

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

Fernando and Mariah are training for six weeks to run in the Salt Lake half- marathon. To train, they run laps around the track at Eastland High School. Since their schedules do not allow them to run together during the week, they each keep a record of the total number of laps they run throughout the week and then always train

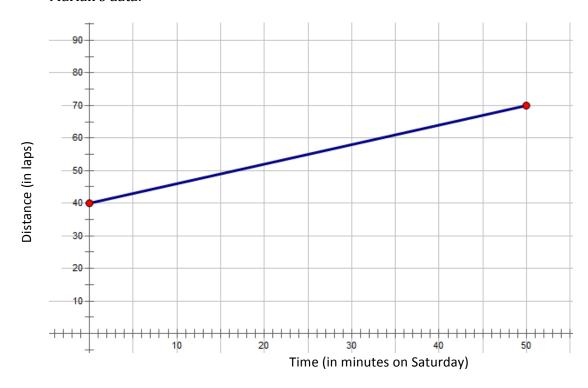
http://www.flickr.com/photos/fargomoorheadcvb/

together on Saturday morning. The following are representations of how each person kept track of the total number of laps that they ran throughout the week plus the number of laps they ran on Saturday.

Fernando's data:

66	72	7Ω	Ω1.	90
(66	66 72	66 72 78	66 72 78 84

Mariah's data:



What observations can be made about the similarities and differences between the two trainers?

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

1.	Write the ed	quation, $m\ell$	(t),	that models	Mariah's	distance.

- 3. In mathematics, sometimes one function can be used to build another. Write Fernando's equation, f(t), by starting with Mariah's equation, m(t).

$$f(t) =$$

4. Use the mathematical representations given in this task (table and graph) to model the equation you wrote for number 3. Write in words how you would explain this new function to your class.

7.4 Training Day Teacher Notes

A Develop Understanding Task

Purpose: Students have had a lot of experience with linear functions and their relationships. They have also become more comfortable with function notation and features of functions. In this task, students first make observations about the rate of change and the distance traveled by the two runners. Using their background knowledge of linear functions, students start to surface ideas about vertical translations of functions and how to build one function from another.

Core Standards Focus:

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. (Note: Focus on vertical translations of graphs of linear and exponential functions.)

F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

F.BF.1 Write a function that describes a relationship between two quantities.★

Related Standards: F.BF.1b, F.IF.1, F.IF.2, A.CED.3

Launch (Whole Class):

To begin this task, read the scenario as a whole group, then ask students to write their answer to the question: "What observations can be made about the similarities and differences between the two trainers?" After a couple of minutes, have students share their observations with a partner. Listen for students to discuss the meaning of the slope and the y-intercept in both situations. If needed, ask the group questions to clarify that the y-intercept is the number of laps each person runs during the week before they meet on Saturday morning and that the slope is the same in both situations. Since the purpose of the lesson is to see how one function can be built from another similar function, these are the two most important ideas to come out of launch conversation.

Explore (Small Group):

As you monitor, listen for student reasoning about the relationship between the amount of laps run by Mariah and Fernando. Encourage students to explain their reasoning to each other using prior academic vocabulary while working through solutions to problems. If students are incorrect in

their thinking, be redirect their thinking by asking them to explain how their function relates to the situation.

Discuss (Whole Class):

During the monitoring phase, select students to share their results to strengthen the whole group understanding of the relationship between the 'original function' (m(t)) and the 'transformed function' (f(t)). You may wish to start the whole group discussion by choosing someone who has graphically shown Fernando and Mariah's graph on the same axes. Have this student share the relationship between the two graphs and press to bring out that, at any given time, f(t) is always '20 laps more' than m(t). Likewise, have a student share who can explain the relationship using a table. After both representations (table and graph) are shown, ask the whole group to see what connections they can make between the equation, table, and graph.

Aligned Ready, Set, Go: Connecting 7.4

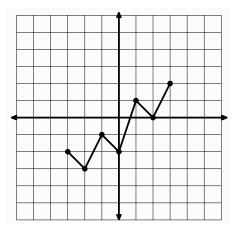
Ready, Set, Go!

http://www.flickr.com/photos/fargomoorheadcvb

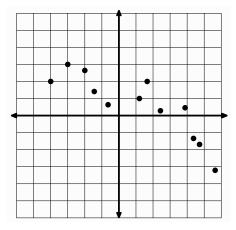
Ready

Topic: Vertical transformations of graphs

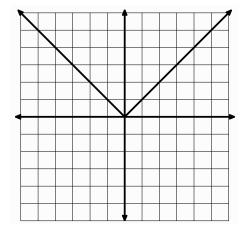
1. Use the graph below to draw a new graph that is translated up 3 units.



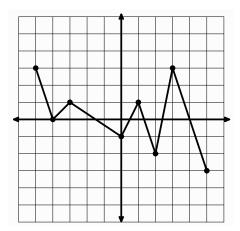
2. Use the graph below to draw a new graph that is translated down 1 unit.



3. Use the graph below to draw a new graph that is translated down 4 units.



4. Use the graph below to draw a new graph that is translated down 3 units.



© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

In partnership with the Utah State Office of Education $\,$

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

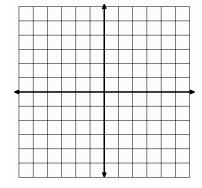
Set

Name:

You are given the equation of f(x) and the transformation g(x) = f(x) + k. Graph both f(x) and g(x) and the linear equation for g(x) below the graph.

5.
$$f(x) = 2x - 4$$

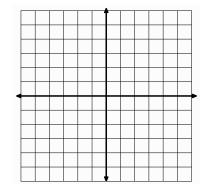
$$g(x) = f(x) + 3$$



$$g(x) =$$

6.
$$f(x) = 0.5x$$

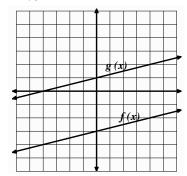
$$g(x) = f(x) - 3$$



$$g(x) =$$

Based on the given graph, write the equation of g(x) in the form of g(x) = f(x) + k. Then simplify the equation of g(x) into slope-intercept form. The equation of f(x) is given.

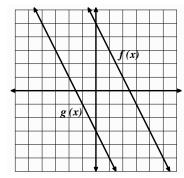
7.
$$f(x) = \frac{1}{4}x - 3$$



a. $g(x) = _{-}$ Translation form

b. $g(x) = _{-}$ Slope-Intercept form

8.
$$f(x) = -2x + 5$$



a. g(x) =_____ Translation form

b. g(x) =_______Slope-Intercept form

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

Go

9. Fernando and Mariah are training for a half marathon. The chart below describes their workout for the week just before the half marathon. If four laps are equal to one mile, and if there are 13.1 miles in a half marathon, do you think Mariah and Fernando are prepared for the event? Describe how you think each person will perform in the race. Include who you think will finish first and what each person's finish time will be. Use the data to inform your conclusions and to justify your answers.

Day of the week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Fernando:	34	45	52	28	49	36
Distance (in laps)	34	43	32	20	47	30
Time per day	60	72	112	63	88	58
(in minutes)	60	72	112	03	00	30
Mariah: Distance	30	48	55	4.4	38	22
(in laps)	30	40	33	44	30	2.2
Time per day	59	75	119	82	70	45
(in minutes)	39	/3	119	02	/0	43

7.5 Training Day Part II

A Practice Understanding Task

Fernando and Mariah continued training in preparation for the half marathon. For the remaining weeks of training, they each separately kept track of the distance they ran during the week. Since they ran together at the same rate on Saturdays, they took turns keeping track of the distance they ran and the time it took. So they would both keep track of their own information, the other person would use the data to determine their own total distance for the week.

http://www.flickr.com/photos/pdgoodmar

Week 2: Mariah had completed 15 more laps than Fernando before they trained on Saturday.

a. Complete the table for Mariah.

Time (in minutes on Saturday)	0	10	20	30	40	50	60
Fernando:	50	56	62	68	74	80	86
Distance (in laps) Mariah:							
Distance (in laps)							

b. Write the equation for Mariah as a transformation of Fernando. Equation for Mariah: m(t) = f(t) _____

Week 3: On Saturday morning before they started running, Fernando saw Mariah's table and stated, "My equation this week will be f(t) = m(t) + 30."

- a. What does Fernando's statement mean?
- b. Based on Fernando's translated function, complete the table.

Time (in minutes	0	20	40	60	70
on Saturday)					
Fernando:					
Distance (in laps)					
Mariah:	45	57	69	81	87
Distance (in laps)					

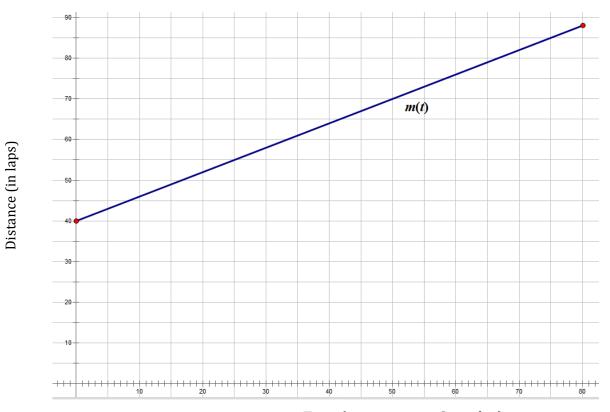
- c. Write the equation for both runners:
- d. Write the equation for Mariah, transformed from Fernando.
- e. What relationship do you notice between your answers to parts c and d?

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education

Week 4: The marathon is only a couple of weeks away!

a. Use Mariah's graph to sketch f(t). f(t) = m(t) - 10



Time (in minutes on Saturday)

- b. Write the equations for both runners.
- c. What do you notice about the two graphs? Would this always be true if one person ran "k" laps more or less each week?

Week 5: This is the last week of training together. Next Saturday is the big day. When they arrived to train, they noticed they had both run 60 laps during the week.

- a. Write the equation for Mariah given that they run at the same speed that they have every week.
- b. Write Fernando's equation as a transformation of Mariah's equation.

What conjectures can you make about the general statement: "g(x) = f(x) + k" when it comes to linear functions?

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

7.5 Training Day Part 2 – Teacher Notes

A Solidify Understanding Task

Purpose: Students will solidify their understanding of vertical transformations of linear functions in this task. Goals of this task include:

- Writing function transformations using function notation.
- Recognizing that the general form y = f(x) + k represents a vertical translation, with the output values changing while the input values stay the same.
- Understanding that a vertical shift of a linear function results in a line parallel to the original.

Core Standards Focus:

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. (Note: Focus on vertical translations of graphs of linear and exponential functions.)

F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

F.BF.1 Write a function that describes a relationship between two quantities.★

Related Standards: F.IF.1, F.IF.2, A.CED.3

Launch (Whole Class):

Read the initial story and ask students to clarify what this means. If not stated, clarify that the two runners are going the same rate each time they run together on Saturday morning. Students should be able to get started on this task without additional support, since it is similar in nature to the work they did on "Training Day".

Explore (Small Group):

Watch for students who confuse input/output values as well as for students who struggle with making sense of using function notation in the first two problems (weeks 2 and 3). Listen for students who make the connection that the 'shift' is about 'adjusting the output values' and are visually showing the connection to the table and the equations (the distance between the number of laps of the two runners is the same in the table as it is in the "shift" or "+K" value).

Week 4 has students visually see the shift of "k" units with a graphical representation. This is another way students see that each output value is exactly k units away from the other function. It can be noted that the lines are parallel, however, make sure the discussion talks about the distance of the output values (since with future functions, they will not be 'parallel lines'... but that they do maintain a distance of K units.

Discuss (Whole Class):

The goal of this whole group discussion is to highlight the different ways to see vertical translations of linear functions. Have different students go over each week of training, showing how the vertical shift of one function relates to the other. For each week, have students show connections between the context, the mathematical representation, and the transformation function.

Aligned Ready, Set, Go: Connections 7.5

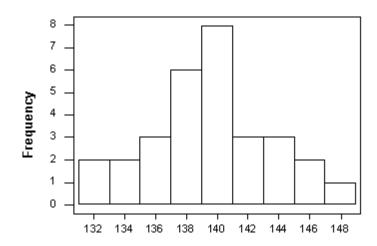
Ready, Set, Go!

http://www.flickr.com/photos/pdgoodman

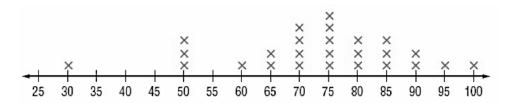
Ready

Topic: Identifying spread.

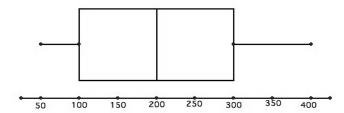
1. Describe the spread in the histogram below.



2. Describe the spread in the line plot below.



3. Describe the spread in the box and whisker plot.



© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

Set

You are given information about f(x) and g(x). Rewrite g(x) in translation form:

$$g(x) = f(x) + k$$

4.
$$f(x) = 7x + 13$$

 $g(x) = 7x - 5$

4.
$$f(x) = 7x + 13$$

 $g(x) = 7x - 5$

5. $f(x) = 22x - 12$
 $g(x) = 22x + 213$

6.

8.

6.
$$f(x) = -15x + 305$$
$$g(x) = -15x - 11$$

$$g(x) =$$
 ______ Translation form

$$g(x) =$$
 _______ Translation form

$$g(x) =$$

7.	X	f(x)	g(x)
	3	11	26
	10	46	61
	25	121	136
	40	196	211

X	f(x)	g(x)
-10	4	-15.5
-3	7.5	-12
22	20	0.5
41	29.5	10

$$g(x) =$$

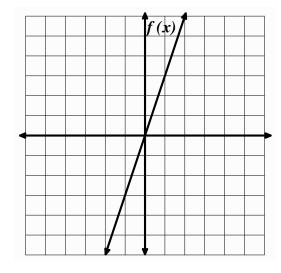
$$g(x) =$$
_______Translation form

$$g(x) =$$

Go

Topic: Vertical and horizontal translations

- 10. Use the graph of f(x) = 3x to answer the following questions.
- a. Sketch the graph of g(x) = 3x 2 on the same grid.
- b. Sketch the graph of h(x) = 3(x 2).
- c. Describe how f(x), g(x), and h(x) are different and how they are the same.



d. Explain in what way the parentheses affect the graph. Why do you think this is so?

© 2012 Mathematics Vision Project| MVP

In partnership with the Utah State Office of Education $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

7.6 Shifting Functions

A Practice Understanding Task

Part I: Transformation of an exponential function.

The table below represents the property value of Rebekah's house over a period of four years.

Rebekah's Home

Time	Property	Common
(years)	Value	Ratio
0	150,000	
1	159,000	
2	168,540	2
3	178,652	
4	189,372	

Rebekah says the function $P(t) = 150,000(1.06)^t$ represents the value of her home.

1. Explain how this function is correct by using the table to show the initial value and the common ratio between terms.

Jeremy lives close to Rebekah and says that his house is always worth \$20,000 more than Rebekah's house. Jeremy created the following table of values to represent the property value of his home.

Jeremy's Home

Time	Property	Relationship to
(years)	Value	Rebekah's table
0	170,000	
1	179,000	
2	188,540	
3	198,652	
4	209,372	

When Rebekah and Jeremy tried to write an exponential function to represent Jeremy's property value, they discovered there was not a common ratio between all of the terms.

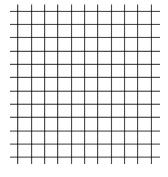
2. Use your knowledge of transformations to write the function that could be used to determine the property value of Jeremy's house.

Part 2: Shifty functions.

Given the function g(x) and information about f(x),

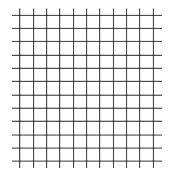
- write the function for f(x),
- graph both functions on the set of axes, and
- show a table of values that compares f(x) and g(x).
- 3. If $g(x) = 3(2)^x$ and f(x) = g(x) 5, then f(x) =

X		
f(x)		
g(x)		



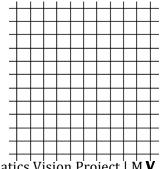
4. If $g(x) = 4(.5)^x$ and f(x) = g(x) + 3, then f(x) =

X		
f(x)		
g(x)		



5. If g(x) = 4x + 3 and f(x) = g(x) + 7, then f(x) =

Χ		
f(x)		
<i>g(x)</i>		



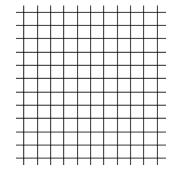
© 2012 Mathematics Vision Project | M V P

In partnership with the Utah State Office of Education

 ${\bf Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-ShareAlike\ 3.0\ Unported\ license.}$

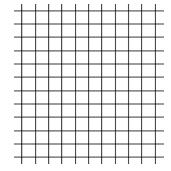
6.	If $g(x) = 2x + 1$ and	f(x) = a	g(x) - 4, then	f(x) =	
o.	$I \setminus g(x) = 2x + 1 $	$f(x) - \epsilon$	f(x) 1, check	, (~) —	

X		
f(x)		
g(x)		



7. If
$$g(x) = -x$$
 and $f(x) = g(x) + 3$, then $f(x) =$ _____

X		
f(x)		
g(x)		



Part III: Communicate your understanding.

8. If f(x) = g(x) + k, describe the relationship between f(x) and g(x). Support your answers with tables and graphs.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P

7.6 Shifting Functions – Teacher Notes

A Practice Understanding Task

Purpose: Students will solidify their understanding of vertical transformations of exponential functions then practice shifting linear and exponential functions in this task. Goals of this task include:

- Writing function transformations using function notation.
- Recognizing that the general form y = f(x) + k represents a change of k units in output values while the input values stay the same.
- Understanding that a vertical shift of a function creates a function that is exactly *k* units above or below the original function.
- Connecting equations, graphs, and table values and how the value of *k* shows up in each representation.

Core Standards Focus:

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. (Note: Focus on vertical translations of graphs of linear and exponential functions.)

F.BF.1 Write a function that describes a relationship between two quantities.★

Related Standards: F.BF.1b, F.IF.1, F.IF.2, F.IF.9, A.CED.3

Launch (Whole Class):

Prior to the task, you may wish to access student background knowledge by asking students how they would determine the equation of an exponential function given a table of values or a pair of points. You may wish to have an example to help clarify:

X	0	1	2	3	4
f(x)	5	10	20	40	80

Introduce this task by talking about the scenario presented, then let students work independently at first, then with a partner to answer questions 1 and 2 from Part I.

Explore (Small Group):

As you monitor Part I of this task, look for student understanding that exponential functions in the form of $f(x) = a(b)^x$ have a common ratio between terms (If there is confusion, correct students-the goal of this task is to deepen student understanding of vertical transformations of linear and exponential functions, not to determine that there is a common ratio between terms). Bring

© 2012 Mathematics Vision Project | Mold VP

students back together, then ask someone to explain why this function, J(t) = R(t) + 20,000 is a solution to problem 2 (Use your knowledge of transformations to write the function that could be used to determine the property value of Jeremy's house.)

Once you discuss how this is similar to the linear and geometric transformations, have students complete the rest of the task, monitoring for student understanding.

Discuss (Whole Class):

Students work toward becoming fluent with transforming linear and exponential functions. For the whole group discussion, choose problems to discuss that were difficult for students to complete. Goals of this task include:

- Writing function transformations using function notation.
- Recognizing that the general form y = f(x) + k represents a change of k units in output values while the input values stay the same.
- Understanding that a vertical shift of a function creates a function that is exactly *k* units above or below the original function.
- Connecting equations, graphs, and table values and how the value of *k* shows up in each representation.

Aligned Ready, Set, Go: Connecting 7.6

Ready, Set, Go!

http://www.flickr.com/photodean/21202433@N08/

Ready

Topic: Finding percentages.

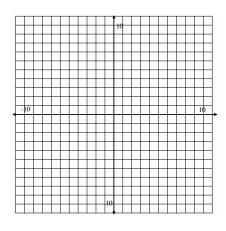
Mrs. Gonzalez noticed that her new chorus class had a lot more girls than boys in it. There were 32 girls and 17 boys. (Round answers to the nearest %.)

- 1. What percent of the class are girls?
- 2. What percent are boys?
- 3. 68% of the girls were sopranos.
- a. How many girls sang soprano?
- b. What percent of the entire chorus sang soprano?
- 4. Only 30% of the boys could sing bass.
- a. How many boys were in the bass section?
- b. What percent of the entire chorus sang bass?
- 5. Compare the number of girls who sang alto to the number of boys who sang tenor. Which musical section is larger? Justify your answer.

Set

Topic: Graphing exponential equations

- 6. Think about the graphs of $y = 2^x$ and $y = 2^x 4$.
- a. Predict what you think is the same and what is different.
- b. Use your calculator to graph both equations on the same grid. Explain what stayed the same and what changed when you subtracted 4. Identify in what way it changed.



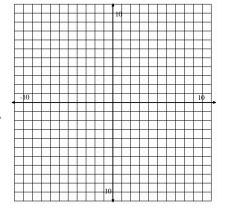
© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

- 7. Think about the graphs of $y = 2^x$ and $y = 2^{(x-4)}$
- a. Predict what you think is the same and what is different.

b. Use your calculator to graph both equations on the same grid.
 Explain what stayed the same and what changed.
 Identify in what way it changed.



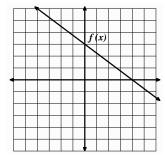
Go

Topic: Vertical translations of linear equations

The graph of f(x) and the translation form equation of g(x) are given. Graph g(x) on the same grid and write the slope-intercept equation of f(x) and g(x).

8.
$$g(x) = f(x) - 5$$

a.

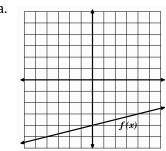


b.
$$f(x) =$$

c.
$$g(x) =$$
_______Slope-Intercept form

9.
$$g(x) = f(x) + 4$$

a.

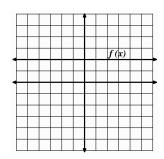


b.
$$f(x) =$$

c.
$$g(x) =$$
______Slope-Intercept form

10.
$$g(x) = f(x) - 6$$

a.



b.
$$f(x) =$$

c.
$$g(x) =$$
_______Slope-Intercept form

Need Help? Check out these related videos:

 $\underline{http://www.khanacademy.org/math/arithmetic/percents/v/identifying-percent-amount-and-base}$

 $^{\circ}$ 2012 Mathematics Vision Project| M ${f V}$ P

