Secondary One Mathematics: An Integrated Approach Module 5 Features of Functions

By

The Mathematics Vision Project:

Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius www.mathematicsvisionproject.org

In partnership with the Utah State Office of Education

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education

Module 5 – Features of Functions

Classroom Task: 5.1 Getting Ready for a Pool Party- A Develop Understanding Task *Using a story context to graph and describe key features of functions t* **(F.IF. 4)**

Ready, Set, Go Homework: Features of Functions 5.1

Classroom Task: 5.2 Floating Down the River – A Solidify Understanding Task Using

tables and graphs to interpret key features of functions (F.IF. 4, F.IF. 5)

Ready, Set, Go Homework: Features of Functions 5.2

Classroom Task: 5.3 Features of Functions – A Practice Understanding Task

Features of functions using various representations (F.IF. 4, F.IF. 5)

Ready, Set, Go Homework: Features of Functions 5.3

Classroom Task: 5.4 The Water Park – A Solidify Understanding Task *Interpreting functions using notation* **(F.IF.2, F.IF.4, F.IF. 5, F.IF.7, A.REI.11, A.CED.3)**

Ready, Set, Go Homework: Features of Functions 5.4

Classroom Task: 5.5 Pooling it Together – A Solidify Understanding Task *Combining functions and analyzing contexts using functions* **(F.BF.1b, F.IF.2, F.IF.4,**

F.IF. 5, F.IF.7, A.REI.11, A.CED.3)

Ready, Set, Go Homework: Features of Functions 5.5

Classroom Task: 5.6 Interpreting Functions – A Practice Understanding Task *Using graphs to solve problems given in function notation* **(F.BF.1b, F.IF.2, F.IF.4, F.IF.**

5, F.IF.7, A.REI.11, A.CED.3)

Ready, Set, Go Homework: Features of Functions 5.6

Classroom Task: 5.7 A Water Function – A Solidify Understanding Task

Defining Function **(F.IF.1)**

Ready, Set, Go Homework: Features of Functions 5.7

Classroom Task: 5.8 To Function or Not to Function – A Practice Understanding Task *Identifying whether or not a relation is a function given various representations* **(F.IF.1,**

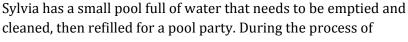
F.IF.3)

Ready, Set, Go Homework: Features of Functions 5.8

Classroom Task: 5.9 Match that Function – A Practice Understanding Task *Matching features and representations of a specific function* **(F.IF.2, F.IF.4, F.IF. 5,**

F.IF.7, A.REI.11, A.CED.3)

Ready, Set, Go Homework: Features of Functions 5.9


© 2012 Salt Lake City School District | Mold VP

In partnership with the Utah State Office of Education

5.1 Getting Ready for a Pool Party

A Develop Understanding Task

getting the pool ready, Sylvia did all of the following activities, each during a different time interval.

Removed water with a single bucket	Filled the pool with a hose (same rate as
	emptying pool)
Drained water with a hose (same rate as filling	Cleaned the empty pool
pool)	
Sylvia and her two friends removed water with	Took a break
three buckets	

1. Sketch a possible graph showing the height of the water level in the pool over time. Be sure to include all of activities Sylvia did to prepare the pool for the party. Remember that only one activity happened at a time. Think carefully about how each section of your graph will look, labeling where each activity occurs.

2. Create a story connecting Sylvia's process for emptying, cleaning, and then filling the pool to the graph you have created. Do your best to use appropriate math vocabulary.

3. Does your graph represent a function? Why or why not? Would all graphs created for this situation represent a function?

© 2012 Mathematics Vision Project | M ${f V}_P$

In partnership with the Utah State Office of Education

Getting Ready for a Pool Party - Teacher Notes

A Develop Understanding Task

Purpose: This task is designed to develop the ideas of features of functions using a situation. Features of functions such as increasing/decreasing and maximum/minimum can be difficult for students to understand, even in a graphical representation if they are not used to reading a graph from left to right. A situation using the water level of a pool over a period of time can provide opportunities for students to make connections to these features. While some parts of the graph need to come before others (emptying the pool before filling the pool), other situations can be switched around (emptying the water with buckets and emptying the water with a hose). The key features of this task include:

- The sketch of the graph is decreasing when the water is being emptied from the pool and the graph is increasing when the pool is being filled with water.
- The sketch of the graph shows a height of zero during a period of time where the pool is empty and being cleaned.
- The sketch of the graph is continuous when the hose is used (both for filling and emptying) and that the rate of change is the same both when filling and when emptying.
- The sketch of the graph looks like a "step function" when using a bucket, with the water level dropping three times faster when Sylvia has friends assisting.
- Students communicate their understanding of graphs in part 2
- Students express that this situation is a function by indicating that every input of time has exactly one output representing the depth of water.

Core Standards Focus:

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

Related Standards: F.IF.1, A.REI.10, F.IF.5, F.IF.7

Launch (Whole Class):

Read the initial situation and the first question. Make sure students understand they are to graph a situation where all methods for emptying, cleaning, and then filling the pool are used in the problem. When they have completed their graph, they are to write a story connecting Sylvia's process for emptying, cleaning, and then filling the pool to the graph they have created.

n

Explore (Small Group):

Your students may already be familiar with strategies for creating graphs given a situation. They are also familiar with slope and rate of change as well as graphing continuous and non-continuous situations (it can be argued that the graph is continuous even during the bucket removal as there is not an instantaneous jump). The context of this problem focuses on decreasing and increasing intervals of the graph, rate of change, and the idea of a function being a continuous linear relationship vs a situation whose rate changes in a 'step function' fashion. During the monitoring phase, press students who are not being specific enough by asking questions such as:

- What is happening during each interval of time on their graph?
- Compare and contrast the different activities. How should the graph for these situations look similar? Different?

This will help bring out the features of functions described in this lesson (see purpose statement above). Other than the features of functions listed above, this task also surfaces the idea of domain and step functions. If you do not have any students create a step function representation during the bucket situation, but they do show a discrete representation, plan to use this during the discussion part of the lesson to get at how the domain is continuous, even if the graph is not.

Have students share their story with a partner, then have them discuss what they agree about with each other's graph as well as possible errors in their thinking.

Discuss (Whole Class):

Choose students to share who have the following as part of their graph. (Be sure students who are sharing can also show their graphs to all students while explaining the features of their graphs):

- Student 1: have a student share that has labeled their axes and has clear ideas about where the graph should be increasing/decreasing. This student is not sharing their story, but highlighting features of their function.
- Student 2: have a student share that has represented the bucket part of the graph to be 'discrete' in nature (not a continuous decreasing linear graph). Highlight the difference between a continuous constant rate of change versus the 'jump' in the amount of water in the pool when using a bucket. At this point, we are still focusing on increasing/decreasing, comparing rates and the idea that a function can have different components within the function (i.e. continuous and discrete). If the conversation naturally comes up at this time about how the discrete portion of the graph should look different (more like a step function), then discuss this now. Otherwise wait until the next student shares and then bring it all together. Again, this student is not sharing their story, but highlighting features of their function.
- Student 3: select a student to share their story while showing each part on the graph. Be sure to choose someone with an accurate story to highlight the features focused in this task.

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P In partnership with the Utah State Office of Education

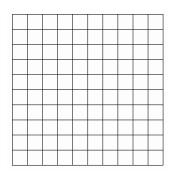
Be sure the discussion includes these features: increasing/decreasing, the y-intercept, labeling the axes and interpreting what this means, and the rates of change. At this time, if the 'step function' conversation has not occurred, use a graph that shows the bucket situation as being discrete, then ask students questions such as:

- Does the graph tell a complete story?
- Pointing to an interval of time that is continuous, ask students to describe what is happening at each moment.
- Point to the discrete part of the graph and ask how much water is in the pool between the two discrete points.

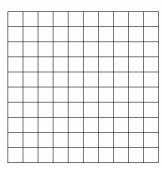
While students do not need to know how to graph step functions in Secondary I, the purpose of this conversation is to have students connect that every point on a graph is a solution (A.REI.10) and that since time is continuous, every input value (the domain) exists from the beginning to the end of emptying, cleaning, then filling the pool (F.IF.5).

Aligned Ready, Set, Go: Features 1

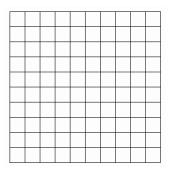
Ready, Set, Go!

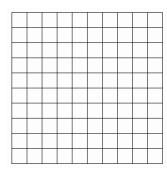

© www.flickr.com/photos/jensmith826

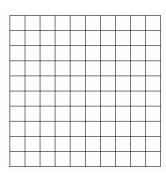
Ready

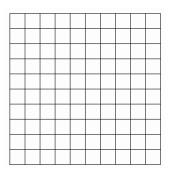

Topic: Graphing linear and exponential functions

Graph each of the functions.


1.
$$f(x) = -2x + 5$$


2.
$$g(x) = 4 - 3x$$


3.
$$h(x) = 5(3)^x$$


4.
$$k(x) = 4(2)^x$$

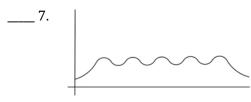
5.
$$v(t) = 2.5t - 4$$

6.
$$f(x) = 8(3)^x$$

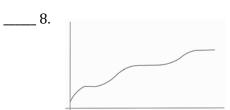
© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

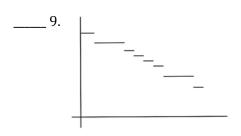
In partnership with the Utah State Office of Education

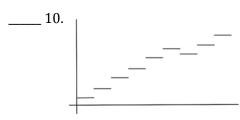

5

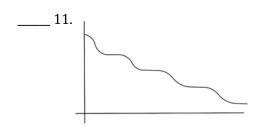

Set

Topic: Describing attributes of a function based on the graphical representation.


For each graph given match it to the contextual description that fits best. Then label the independent and dependent axis with the proper variables.




a. The amount of money in a savings account where regular deposits and some withdrawals are made.

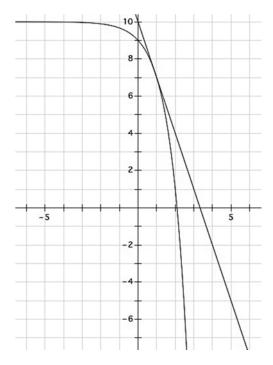

b. The temperature of the oven on a day that mom bakes several batches of cookies.

c. The amount of gasoline on hand at the gas station before a tanker truck delivers more.

d. The number of watermelons available for sale at the farmer's market on Thursday.

e. The amount of mileage recorded on the odometer of a delivery truck over a time period.

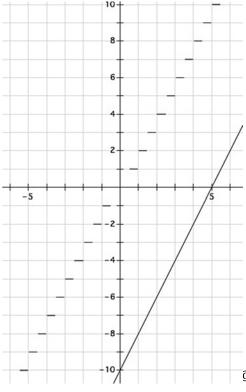
© 2012 Mathematics Vision Project| M ${f V}$ P



In partnership with the Utah State Office of Education

6

Given the pair of graphs on each coordinate grid, create a list of similarities the two graphs share and a list of differences. (Consider attributes like, continuous, discrete, increasing, decreasing, linear, exponential, restrictions on domain or range, etc.)


12.

Similarities:

Differences:

13.

Similarities:

Differences:

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

Find the value of *x* in each equation.

14.
$$10^x = 100,000$$

15.
$$3x + 7 = 5x - 21$$

15.
$$3x + 7 = 5x - 21$$
 16. $-6x - 15 = 4x + 35$

17.
$$5x - 8 = 37$$

18.
$$3^x = 81$$

$$19.3x - 12 = -4x + 23$$

$$20. 10 = 2^x - 22$$

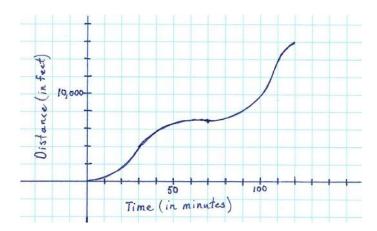
$$21. 243 = 8x + 3$$

22.
$$5^x - 7 = 118$$

5.2 Floating Down the River

A Solidify Understanding Task

Alonzo, Maria, and Sierra were floating in inner tubes down a river, enjoying their day. Alonzo noticed that sometimes the water level was higher in some places than in others. Maria noticed there were times they seemed to be moving faster than at other times. Sierra laughed and said "Math is everywhere!" To learn more about the river, Alonzo and Maria collected data throughout the trip.



Alonzo created a table of values by measuring the depth of the water every ten minutes.

Time (in minutes)	0	10	20	30	40	50	60	70	80	90	100	110	120
Depth (in feet)	4	6	8	10	6	5.	4	5	7	12	9	6.5	5

1. Use the data collected by Alonzo to interpret the key features of this relationship.

Maria created a graph by collecting data on a GPS unit that told her the distance she had traveled over a period of time.

2. Using the graph created by Maria, describe the key features of this relationship.

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education

- 3. Sierra looked at the data collected by her two friends and made several of her own observations. Explain why you either agree or disagree with each observation made.
 - The depth of the water increases and decreases throughout the 120 minutes of floating down the river.
 - The distance traveled is always increasing.
 - The distance traveled is a function of time.
 - The distance traveled is greatest during the last ten minutes of the trip than during any other ten minute interval of time.
 - The domain of the distance/time graph is all real numbers.
 - The y-intercept of the depth of water over time function is (0,0).
 - The distance traveled increases and decreases over time.
 - The water level is a function of time.
 - The range of the distance/time graph is from [0, 15000].
 - The domain of the depth of water with respect to time is from [0,120]
 - The range of the depth of water over time is from [4,5].
 - The distance/ time graph has no maximum value.
 - The depth of water reached a maximum at 30 minutes.

Features of Functions 9

5.2 Floating Down the River – Teacher Notes

A Solidify Understanding Task

Purpose: The purpose of this task is to further define function and to solidify key features of functions given different representations. Features include:

- domain and range
- where the function is increasing or decreasing
- *x and y* intercepts
- rates of change (informal)
- discrete versus continuous

Core Standards Focus:

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \bigstar

Related Standards: F.IF.1, F.IF.6

Launch (Whole Class): Read the scenario out loud. Before students begin, access their background knowledge of what it means to interpret key features by asking "What are some of the key features we look for when interpreting graphs (or tables)?" After the key features are mentioned (domain, range, intervals where the function is increasing/decreasing, and intercepts), have students in small groups to work on the task.

Explore (Small Group): As you monitor, listen for student explanations as they interpret key features of both the table and the graph. If students struggle with writing features based on the table, you may ask them to tell the story represented by the table values or prompt with a question such as "How deep is the water at 0 minutes? What do you know about the water level after this time?" Another prompt would be to ask students if using another representation would help them

see the features. Encouraging students to visually connect the key feature described to the mathematical representation will help during the whole group discussion.

Note: If most students are struggling to name the features using the two representations, bring the whole group together after all groups have had time to work on the table representation. Select a student who has correctly used interval notation to describe where the water level is increasing and decreasing to share. Be sure the connection is visually made between the table and the interval notation. Then ask the whole group what other features can be interpreted from the table. Include domain, range, and intercepts at this time. At some point, we want to bring up that while the table values are discrete, the function is continuous. If a student brings this up now, address it. Otherwise wait until the whole group discussion of the entire task.

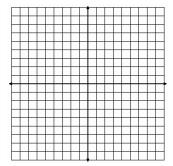
Discuss (Whole Class): The goal of the whole group discussion is to highlight the connections between a given representation and the key features of that function. Be sure to use academic vocabulary throughout the whole group discussion. Before starting the whole group discussion, post the table and the graph so students can better communicate their observations about the feature they are describing. Begin the whole group discussion by going over a couple of the observation statements made by Sierra that will create an opportunity to have students communicate viable arguments. For example, the range of the depth of water conversation will bring out how it is important to look at output values when discussing the range, and not the beginning and ending point of the trip. After going over a couple of the observation statements, choose a student to share the key features of the graph (distance vs. time). Be sure this student highlights each feature on the graph while also writing the interpreted feature next to the graph. After the features are shared, ask the whole group about the other observation statements made by Sierra that relate to the graph. Then choose another student to share the key features of the table. After, go over the observation statements made by Sierra. If, at this time, the conversation has not come up about how this table of values is discrete but represents a continuous function, ask students about the domain. Be sure that at the end of this discussion, students understand that a table of values only shows some of the solution points for a continuous function.

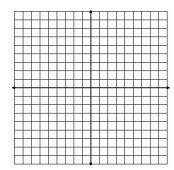
Aligned Ready, Set, Go: Features 5.2

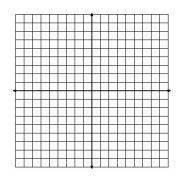
Ready, Set, Go!

© www.flickr.com/photos/hamiltonca

Ready

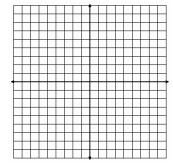

Topic: Solve systems by graphing

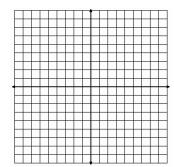

Graph each system of linear equations and find where f(x) = g(x)

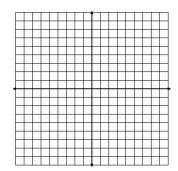

1.
$$\begin{cases} f(x) = 2x - 7 \\ g(x) = -4x + 5 \end{cases}$$

2.
$$\begin{cases} f(x) = -5x - 2\\ g(x) = -2x + 1 \end{cases}$$

3.
$$\begin{cases} f(x) = -\frac{1}{2}x - 2\\ g(x) = 2x + 8 \end{cases}$$

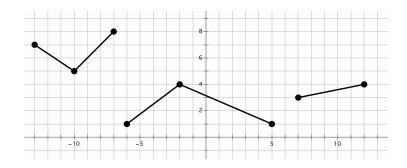




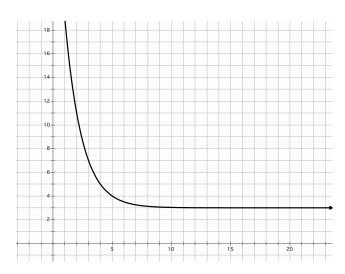

4.
$$\begin{cases} f(x) = \frac{2}{3} x - 5 \\ g(x) = -x \end{cases}$$

5.
$$\begin{cases} f(x) = \frac{2}{3}x + 4\\ g(x) = -\frac{1}{3}x + 1 \end{cases}$$

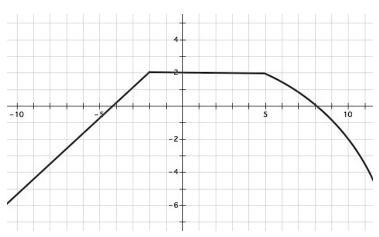
$$6. \begin{cases} f(x) = x \\ g(x) = -x - 3 \end{cases}$$


11

Set


Topic: Describe features of a function from its graphical representation.

For each graph given provide a description of the function. Be sure to consider the following: decreasing/increasing, min/max, domain/range, etc.


7. Description of function

8. Description of function

9. Description of function

© 2012 Mathematics Vision Project| M V_P

In partnership with the Utah State Office of Education

Features of Functions | 5.2

Go

Topic: Create equations using both explicit and recursive notation.

Write equations for the given tables in both recursive and explicit form.

10.

10.	
n	f(n)
1	5
2	2
3	-1

11.	
n	f(n)
1	6
2	12
3	24

12

12.	
n	f(n)
0	-13
2	-5
3	-1

Explicit: **Explicit:** Explicit:

Recursive: Recursive: Recursive:

13.

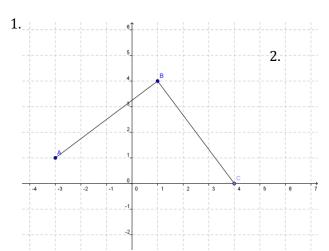
n	f(n)
1	5
4	11
5	13

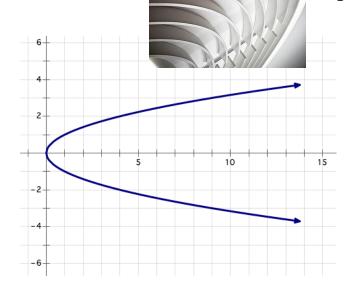
14

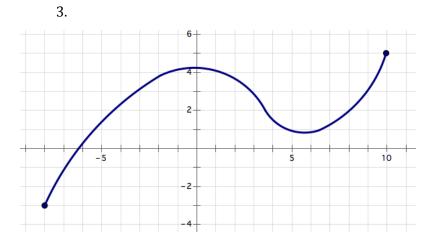
f(n)
5
15,625
390,625

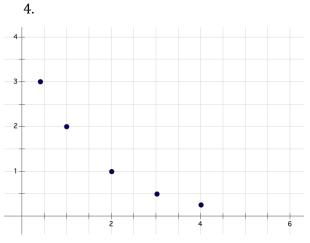
15.

n	f(n)
0	-4
1	-16
2	-64

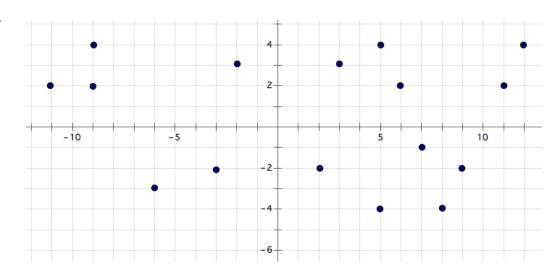

Explicit: Explicit: Explicit:

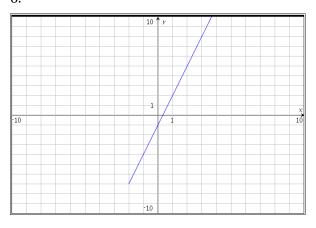

Recursive: Recursive: Recursive:

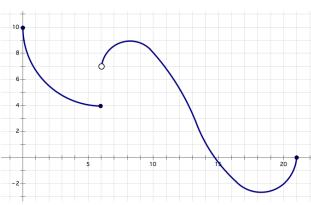

5.3 Features of Functions


A Practice Understanding Task

For each graph, determine if the relationship represents a function, and if so, state the key features of the function (intervals where the function is increasing or decreasing, the maximum or minimum value of the function, domain and range, x and y intercepts, etc.)






5.

6.

7.

The following represents a continuous function defined on the interval from [0, 6].

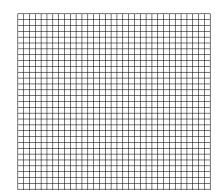
X	f(x)
0	2
1	-3
2	0
3	2
4	6
5	12
6	20

- 8. Determine the domain, range, x and y intercepts.
- 9. Based on the table, identify the minimum value and where it is located

The following represents a discrete function defined on the interval from [1,5].

X	f(x)
1	4
2	10
3	5
4	8
5	3

- 10. Determine the domain, range, x and y intercepts.
- 11. Based on the table, identify the minimum value and where it is located.


Describe the key features for each situation.

- 12. The amount of daylight dependent on the time of year.
- 13. The first term in a sequence is 36. Each consecutive term is exactly 1/2 of the previous term.
- 14. Marcus bought a \$900 couch on a six months, interest free payment plan. He makes \$50 payments to the loan each week.
- 15. The first term in a sequence is 36. Each consecutive term is 1/2 less than the previous term.
- 16. An empty 15 gallon tank is being filled with gasoline at a rate of 2 gallons per minute.

For each equation, sketch a graph and show key features of the graph.

17.
$$f(x) = -2x + 4$$
, when $x \ge 0$

18.
$$g(x) = 3^x$$

5.3 Features of Functions – Teacher Notes

A Practice Understanding Task

Special Note to Teachers: (only if needed)

Purpose: This task is designed for students to practice interpreting key features of functions using graphs, a table of values, and situations. The key features of this task include students:

- Applying their knowledge to interpret key features of functions
- Practicing writing the domain of a function
- Comparing discrete and continuous situations
- Graphing linear and exponential equations and describing key features of the graph

Core Standards Focus:

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Related Standards: F.IF.1, F.IF.3

Launch (Whole Class):

Students should be able to get started on this task without additional support, since it is similar in nature to the work they did on "Getting Ready for a Pool Party" and "Floating Down the River". This would be a good task to have students do in pairs.

Explore (Small Group):

Monitor students to make sure they are accurately answering the questions about the features of functions. If they are only writing down one or two features, ask them what other features they notice. This is a good task to have students justify their answer to their partner as they go through the task. If students are incorrect in their thinking, be sure to redirect their thinking. As you monitor, make note of the areas where students are struggling to highlight these misconceptions in the whole group discussion.

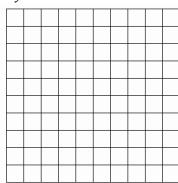
Discuss (Whole Class):

Since this is a Practice Task, the discussion should include going over problems that seem to be common issues as well as problems that drive home the standards. To start the whole group discussion, choose a student to go over all of the features of one of the graphs to make sure the proper vocabulary and corresponding features are shown. Use this example to then go over features that are still confusing for students.

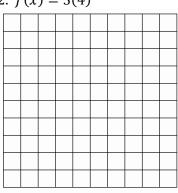
The goal of this whole group discussion is that ALL students can interpret key features of graphs and tables and determine the domain of a function.

Aligned Ready, Set, Go: Features 5.3

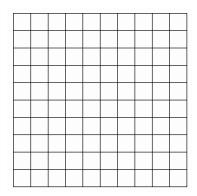
Ready, Set, Go!


Ready

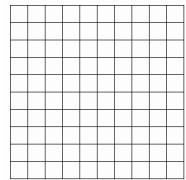
Topic: Creating graphical representations and naming the domain.



Sketch a graph to represent each function, then state the domain of the function.


$$1. y = 3x - 5$$

2.
$$f(x) = 3(4)^x$$



3. A sequence of terms such that
$$f(0) = 1$$
, $f(n) = f(n-1) - 7$

4. A sequence of terms such that

$$f(1) = 8$$
, $f(n) = \frac{1}{2}f(n-1)$

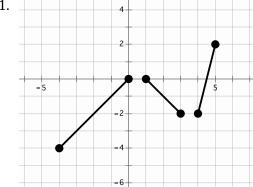
Set

Topic: Attributes of linear and exponential functions.

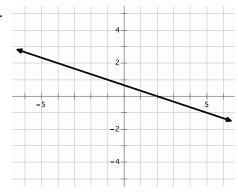
© 2012 Mathematics Vision Project| M ${f V}$ P In partnership with the Utah State Office of Education

17

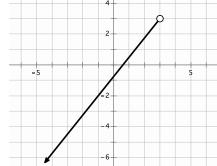
Determine if the statement is true or false, then justify why.

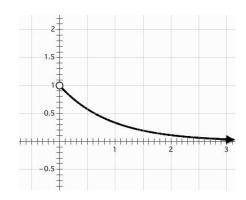

- 5. All linear functions are increasing.
- 6. Arithmetic sequences are an example of linear functions.
- 7. Exponential functions have a domain that includes all real numbers.
- 8. Geometric sequences have a domain that includes all integers.
- 9. The range for an exponential function includes all real numbers.
- 10. All linear relationships are functions with a domain and range containing all real numbers.

Go


Topic: Determine the domain of a function from the graphical representation.

For each graph determine the domain of the function.

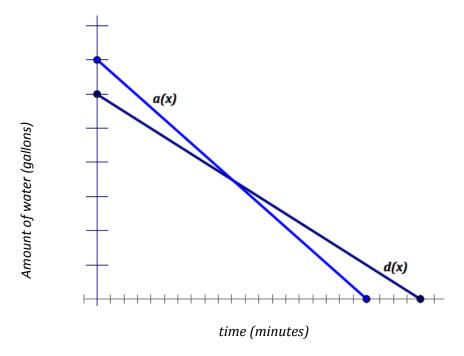

11.


12.

13.

14.

© 2012 Mathematics Vision Project| Mold VP


In partnership with the Utah State Office of Education

5.4 The Water Park

A Solidify Understanding Task

Aly and Dayne work at a water park and have to drain the water at the end of each month for the ride they supervise. Each uses a pump to remove the water from the small pool at the bottom of their ride. The graph below represents the amount of water in Aly's pool, a(x), and Dayne's pool, d(x), over time.

Part I

1. Make as many observations as possible with the information given in the graph above.

Part II

Dayne figured out that the pump he uses drains water at a rate of 1000 gallons per minute and takes 24 minutes to drain.

2. Write the equation to represent the draining of Dayne's pool, d(x). What does each part of the equation mean?

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education

- 3. Based on this new information, correctly label the graph above.
- 4. For what values of *x* make sense in this situation? Use interval notation to write the domain of the situation.
- 5. Determine the range, or output values, that make sense in this situation.
- 6. Write the equation used to represent the draining of Aly's pool, a(x). Using interval notation, state the domain and range for the function, a(x) as well as the domain and range of the situation. Compare the two domains by describing the constraints made by the situation.

Part III

Based on the graph and corresponding equations for each pool, answer the following questions.

- 7. When is a(x) = d(x)? What does this mean?
- 8. Find a(10). What does this mean?
- 9. If d(x)=2000, then x=___. What does this mean?
- 10. When is a(x) > d(x)? What does this mean?

5.4 The Water Park - Teacher Notes

A Solidify Understanding Task

Purpose: The purpose of this task is for students to interpret and highlight features of functions using contexts. This task provides opportunities for students to practice skills they have already learned as well as solidifying their knowledge of features of functions. This task first asks students to make observations from a graph. There are several observations to make and by having students make these observations, they are accessing their background knowledge as a way to prepare for this task. In the following sections, students solidify their understanding of domain and distinguish between the domain of a function and the domain of a situation. They also use function notation to interpret the meaning of the situation. The following mathematics should be addressed in this task:

- Interpreting x and y intercepts
- Comparing rates of change
- Finding where two functions are equivalent
- Connecting the equation to a graph and appropriately labeling a graph
- Determine the domain of a function as well as the restricted domain due to a story context
- Interpreting function notation for both input and output values

Core Standards Focus:

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

A.REI.11 Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar

A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Related Standards: F.IF.1, A.REI.10, A.REI.11, N.Q.1, A.CED.2

Launch (Whole Class):

Part 1 of this task has students make observations of a story context by interpreting two graphs on the same set of axes. The scale factor of the graph is intentionally not labeled (this will be part of what students do during the task). Students should share their observations about the story context based on their prior experience with linear functions and without having to be precise.

Begin the task with a copy of the graph displayed. After reading the prompt, have students spend a couple of minutes writing down their observations independently. Then, as a whole group, have students offer their insights to the class using appropriate academic language (i.e. decreasing, constant rate, etc). Use this opportunity to have students justify the rationale for each observation. Reinforce with visual cues (i.e. point to the intersection of the two graphs when someone shares that at a certain time, both pools will have the same amount of water). Some of the other observations to highlight include:

- Each pool is decreasing
- Each pool is decreasing at a constant rate, although not the same rate as the other
- Aly's pool is draining at a faster rate than Dayne's
- At some point in time, both pools will have the same amount of water in them
- Dayne's pool has less water in it initially
- Aly's pool will be empty before Dayne's but they will both have 0 water in them at some point in time
- At some point, both pools will be empty

Explore (Small Group):

After completing Part 1 as a whole group, have students continue completing Parts II and III in small groups. If students seem stuck with writing the equation for Dayne's pool, you might suggest they use a strategy they have used in the past to write the equation of a line. (Creating two points based on the information given, writing a table of values, or using the graph may be ways students

© 2012 Mathematics Vision Project | Mold VP

determine the equation). The purpose of Part II is to have students communicate the meaning of the context and to use this information to relate the domain of the function to the situation. For Part III, listen for students to make sense of the notation. Students have background knowledge about finding intersections and missing values, and they have background knowledge about using function notation. The new twist for them here is to transfer this knowledge of making sense of the notation to answer the questions posed in this task. Encourage students to communicate this meaning in words and by showing where this shows up on the graph.

Discuss (Whole Class):

Most of the whole group discussion should focus on features such as domain and intercepts from Part II and making sense of notation from Part III.

For Part II, choose two different students to explain their strategies for coming up with the equations for Dayne and Aly. During this time, also make sure other highlights of Part II come out during the discussion (intercepts, domain of function versus domain of situation).

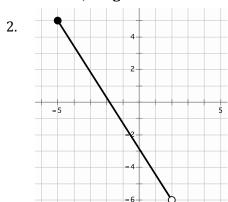
Move the conversation on to Part III. Choose students to share who have made sense of the questions. For questions 7, 8, and 9, have students explain the meaning of the question, then share their strategy for solving. Connections should be made between the graph and the equations. If some groups struggled during this portion of the task, have everyone work in their small group to solve problem 10, then go over as a whole group.

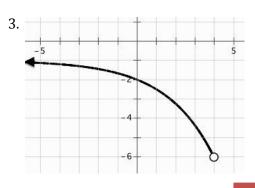
Aligned Ready, Set, Go: Features of Functions 5.4

Ready, Set, Go!

© www.flickr.com/photos/ableman

Ready

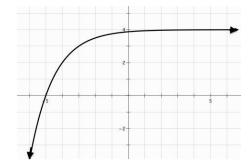

Set

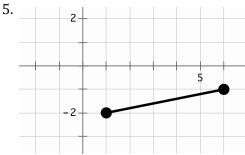

Topic: Attributes of linear and exponential functions.

1. Write a well-developed paragraph comparing and contrasting linear and exponential functions. Be sure to include as many characteristics of each function as possible and be clear about the similarities and differences these functions have.

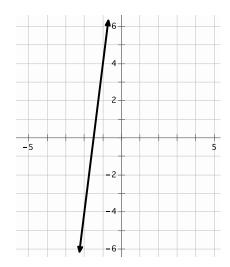
Topic: Identifying attributes of a function from its graphical representation.

Based on the graph given in each problem below, identify attributes of the function such as the domain, range and whether or not the function is increasing or decreasing, etc.

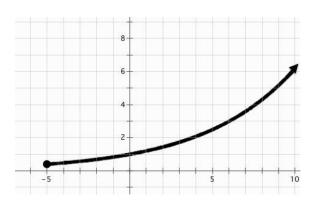


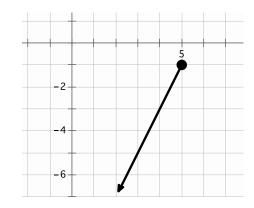


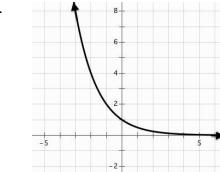
© 2012 Mathematics Vision Project| Mold VP


In partnership with the Utah State Office of Education

4.




6.


7.

8.

9.

© 2012 Mathematics Vision Project| M V_P

In partnership with the Utah State Office of Education

Features of Functions 5.4

Go

Topic: Finding equations and rules for functions

Find both the explicit and the recursive equations for each table of values below.

1	Λ
T	υ

10.	
n	f(n)
1	3
2	5
3	7
4	9

11.	
n	f(n)
2	4
3	8
4	16
5	32

12.

n	f(n)
6	23
7	19
8	15
9	11

Explicit:

Recursive:

Expl	icit:
------	-------

Explicit:

Recursive:

Recursive:

13.

n	f(n)
1	1
2	3
3	9

14.

- ···	
n	f(n)
3	8
4	4
5	2

15.

n	f(n)
6	7
9	13
12	19

Explicit:

Recursive:

Explicit:

Recursive:

Explicit:

Recursive:

16.	
n	f(n)
2	40
4	32
8	16

17

17.	
n	f(n)
2	16
3	4
4	1

18.

n	f(n)
n	f(n)
17	5
20	10
26	20

Explicit:

Explicit:

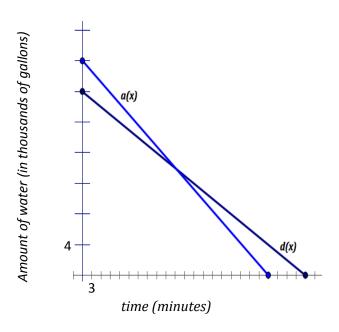
Explicit:

Recursive:

Recursive:

Recursive:

© 2012 Mathematics Vision Project| M V_P


5.5 Pooling It Together

A Solidify Understanding Task

Aly and Dayne work at a water park and have to drain the water at the end of each month for the ride they supervise. Each uses a pump to remove the water from the small pool at the bottom of their ride. The graph below represents the amount of water in Aly's pool, a(x), and Dayne's pool, d(x), over time. In this scenario, they decided to work together to drain their pools and created the equation g(x) = a(x) + d(x). Using the graph below showing a(x)

and d(x), create a new set of axes and graph g(x). Identify g(x) and label (scale, axes).

Answer the following questions about g(x).

- 1. What does g(x) represent?
- 2. Name the features of g(x) and explain what each means (each intercept, domain and range for this situation and for the equation, maxima and minima, whether or not g(x) is a function, etc.)
- 3. Write the equation for g(x) using the intercepts from the graph. Compare this equation to the sum of the equations created for a(x) and d(x) from "The Water Park" task. Should be they be equivalent? Why or why not?

© 2012 Mathematics Vision Project | Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

When combining functions, a lot of connections can be made. Make at least three connections showing how the equations a(x), d(x), and g(x) relate to the graphs of a(x), d(x), and g(x). (hint: think about the key features of these functions).

For A Twist:

If Aly and Dayne's boss started to drain the water before they arrived and when they got there, there was already 5,000 less gallons of water to be drained, how would this impact the equation?

Write the new equation representing how long it will take them to drain the two pools.

5.5 Pooling It Together – Teacher Notes

A Solidify Understanding Task

Purpose: The purpose of this task is for students to combine functions, make sense of function notation, and connect multiple representations (context, equations, and graphs). Students will also address features of functions as they solve problems that arise from this context.

Core Standards Focus:

F.BF.1 Write a function that describes a relationship between two quantities. ★ b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

A.REI.11 Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar

A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Related Standards: F.IF.1, A.REI.10, A.REI.11, N.Q.1, A.CED.2

Launch (Whole Class):

Read the introduction and remind students of the task "The Water Park" where Aly and Dayne drained the water from the pools they supervise in a water park. Ask the whole group "What does g(x) = a(x) + d(x) mean?" After going over that g(x) represents the combined efforts of draining the two pools, move to the explore part of the task by having students use whatever method they choose to create the graph of g(x) and then continue working on the task in small groups.

Explore (Small Group):

For 'stuck' students, prompt them with questions such as "What information do you know about Aly and Dayne's pools?" and "How can you represent the information you know about a(x) and d(x) so that you can make sense of g(x)?" (Students can find solutions to solve for g(x) by creating a table, a graph, or looking at equations.)

Look for students who use different representations to answer the questions from the task. Make note of this as for the whole group discussion, you may wish to select students who use different methods for solving the first two questions. A common misconception will be that students who use intercepts will add the x-intercepts to find the 'new' x-intercept. This is a great opportunity to distinguish why it is appropriate to add the y-intercepts to find the new y-intercept (they are the output values hence are the values of a(x) + d(x) and represent the amount of water in the pool) but why you do not add the x-intercepts to find the new x-intercept (they are the input values and represent the amount of time it takes for each pool to drain separately).

Discuss (Whole Class):

The goal of this task is to make sure students have a deeper understanding of key features of functions and to be clearer about function notation.

The whole group discussion should cover what each part of a function represents and how this plays out when using function notation. It is most effective when students see this graphically, numerically, and with equations and make connections with the features of the function. There are many ways the whole group discussion can accomplish these goals. Below is a suggestion for how to facilitate the whole group discussion using student error that is also a common misconception.

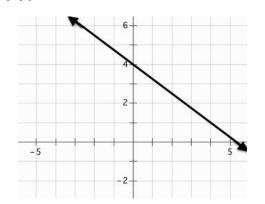
You may wish to start the whole group discussion by having two students post their graphs of g(x), one being correct and the other being the common misconception (only do this if you feel your class

1

has a safe environment and students believe that part of the learning process is to learn from mistakes). Start the conversation with how these are the two most common graphs throughout the room and that many people have either one or the other on their paper. Ask the whole group what is similar and what is different (both groups will have the same y-intercept). Then choose a student who has created a table showing the sum of the output values who agrees with the correct graph (choose this student in advance). Also have a student show how the equation of a(x) + d(x) shows up in the correct graph. Be sure that students who share are explicit in the connections showing how the equations a(x), d(x), and g(x) relate to the graphs of a(x), d(x), and g(x). After all students see the connections between the correct graph and other representations, ask what the common misconception was in the 'incorrect graph'. In the end, students should leave with how x is the input value and that g(x) is the solution to the value at x.

Aligned Ready, Set, Go: Features 5.5

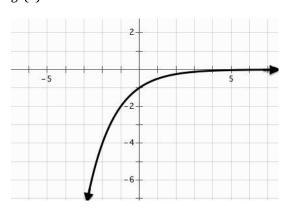
Ready, Set, Go!



Ready

Topic: Use a graphical representation to find solutions.

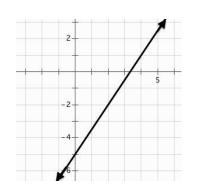
Use the graph of each function provided to find the values indicated.



a.
$$f(4) =$$

c.
$$f(x) = 4$$
, $x = _____ d. f(x) = 7$, $x = ______$

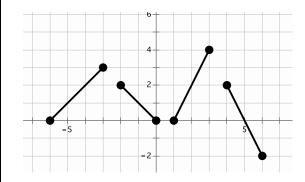
$$d. f(x) = 7$$
, $x = _____$


2. g(x)

c.
$$g(x) = -4$$
 $x = ______$

c.
$$g(x) = -4$$
 $x = ____ d. g(x) = -1$, $x = _____$

3. h (x)


a.
$$h(0) =$$

a.
$$h(0) =$$
_____ b. $h(3) =$ _____

c.
$$h(x) = 1$$
, $x = _____ d. h(x) = -2$, $x = ______$

d.
$$h(x) = -2$$
, $x = ____$

 $\overline{4}$. d(x)

a.
$$d(-5) =$$
 b. $d(4) =$

c.
$$d(x) = 4$$
, $x =$ _____ d. $d(x) = 0$, $x =$ ____

d.
$$d(x) = 0$$
, $x = ____$

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

Features of Functions 5.5

Set

Topic: Given context of a function find solutions.

For each situation either create a function or use the given function to find and interpret solutions.

- 5. Fran collected data on the number of feet she could walk each second and wrote the following rule to model her walking rate d(t) = 4t.
 - a. What is Fran looking for if she writes "d(12) ="?
 - b. In this situation what does d(t) = 100 tell you?
 - c. How can the function rule be used to indicate a time of 16 seconds was walked?
 - d. How can the function rule be used to indicated that a distance of 200 feet was walked?
- 6. Ms. Callahan works hard to budget and predict her costs for each month. She is currently attempting to determine how much her cell phone company will likely charge her for the month. She is paying a flat fee of \$80 a month for a plan that allows for unlimited calling but costs her an additional twenty cents per text message.
 - a. Write a function, c(t), for Ms. Callahan's current cell plan that will calculate the cost for the month based on the number of text messages she makes.

d. Find
$$c(t) = 100$$

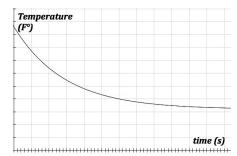
e. Find
$$c(t) = 90$$

f. At what number of texts would \$20 unlimited texting be less expensive then her current plan?

Features of Functions | 5.5

7. Mr. Multbank has developed a population growth model for the rodents in the field by his house. He believes that starting each spring the population can be modeled based on the number of weeks with the function $p(t)=8(2^t)$.

- a. Find p(t) = 128
- b. Find *p* (4)
- c. Find *p* (10)
- d. Find the number of weeks it will take for the population to be over 20,000.
- e. In a year with 16 weeks of summer, how many rodents would he expect by the end of the summer using Mr. Multbank's model? What are some factors that could change the actual result from your estimate?


Go

Topic: Discrete and continuous

For each context or representation determine whether it is discrete or continuous or could be modeled best in a discrete or continuous way and state why.

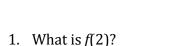
8. Susan has a savings plan where she places \$5 a week in her piggy bank.

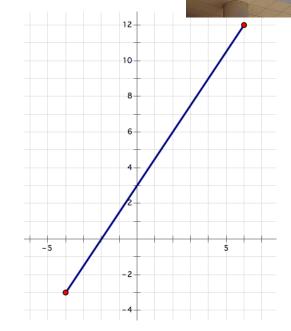
10.

- 11. Marshal tracks the number of hits he gets each baseball game and is recording his total number of hits for the season in a table.
- 12. The distance you have traveled since the day began.

13.

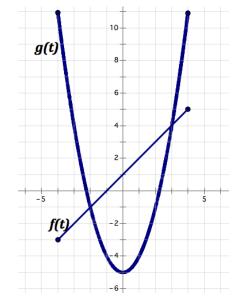
Number of Gum Balls	Cost
5	1
10	2
15	3
20	4


© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P


5.6 Interpreting Functions

A Practice Understanding Task

Given the graph of f(x), answer the following questions. Unless otherwise specified, restrict the domain of the function to what you see in the graph below. Approximations are appropriate answers.



- 2. For what values, if any, does f(x) = 3?
- 3. What is the x-intercept?
- 4. What is the domain of f(x)?
- 5. On what intervals is f(x) > 0?
- 6. On what intervals is f(x) increasing?
- 7. On what intervals is f(x) decreasing?
- 8. For what values, if any, is f(x) > 3?

Consider the linear graph of f(t) and the nonlinear graph of g(t) to answer questions 9-14. Approximations are appropriate answers.

- 9. Where is f(t) = g(t)?
- 10. Where is f(t) > g(t)?
- 11. What is f(0) + g(0)?
- 12. What is f(-1) + g(-1)?
- 13. Which is greater: f(0) or g(-3)?
- 14. Graph: f(t) + g(t) from [-1, 3]

© 2012 Mathematics Vision Project | M ${f V}$ P

The following table of values represents two continuous functions, f(x) and g(x). Use the table to answer the following questions:

f(x)	g(x)
42	-13
30	-9
20	-5
12	-1
6	3
2	7
0	11
0	15
2	19
6	23
12	27
20	31
	42 30 20 12 6 2 0 0 2 6 12

- 15. What is g(-3)?
- For what value(s) is f(x) = 0? 16.
- 17. For what values is f(x) increasing?
- 18. On what interval is g(x) > f(x)
- 19. Which function is changing faster in the interval [-5, 0]? Why?

Use the following relationships to answer the questions below.

$$h(x) = 2^x$$

$$f(x) = 3x - 2$$
 $g(x) = 5$ $x = 4$ $y = 5x + 1$

$$a(x) = 5$$

$$x = 4$$

$$v = 5x + 1$$

- 20. Which of the above relations are functions? Explain.
- 21. Find f(2), g(2), and h(2).
- 22. Write the equation for g(x) + h(x).
- 23. Where is g(x) < h(x)?
- 24. Where is f(x) increasing?
- 25. Which of the above functions has the fastest growth rate?

© 2012 Mathematics Vision Project | M ${f V}$ P

5.6 Interpreting Functions – Teacher Notes

A Practice Understanding Task

Purpose: Students have been using function notation in various forms and have become more comfortable with features of functions. In this task, the purpose is for students to practice their understanding of the following:

- Distinguish between input and output values when using notation
- Evaluate functions for inputs in their domains
- Determine the solution where the graphs of f(x) and g(x) intersect based on tables of values and by interpreting graphs
- Combine standard function types using arithmetic operations (finding values of f(x) + g(x))

Core Standards Focus:

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.**

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F.BF.1b Write a function that describes a relationship between two quantities. Combine standard function types using arithmetic operations.

A.REI.11 Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g.,

© 2012 Mathematics Vision Project | M ${f V}$ P

using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar

A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. *For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*

Related Standards: F.IF.1, A.REI.10, A.REI.11, N.Q.1, A.CED.2

Launch (Whole Class):

Students should be able to get started on this task without additional support, since it is similar in nature to the work they did on "The Water Park" and "Pooling It Together". If preferred, you may wish to sketch a graph on the board and ask students a couple of questions using function notation before having them begin the task. This would be a good task to have students start on their own, then have them pair up after most have completed the first set of questions.

Explore (Small Group):

Watch for students who confuse input/output values. Without context, keeping track of this is a common mistake. Encourage students to explain their reasoning to each other while working through solutions to problems. If students are incorrect in their thinking, be sure to redirect their thinking. As you monitor, make note of the areas where students are struggling.

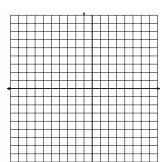
Discuss (Whole Class):

Go over problems that seem to be common issues that students are still grappling with first. After this, choose students to share their method for graphing number 14. Compare students who used point by point to those who added on from one graph to the next.

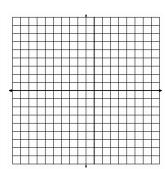
The goal of this whole group discussion is that ALL students can evaluate functions using notation, can interpret features of functions using a graph or table of values, and can combine two functions to make another function.

Aligned Ready, Set, Go: Features 5.6

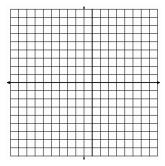
Ready, Set, Go!

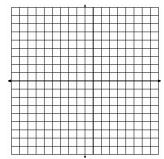

© www.flickr.com/photos/alanenglish

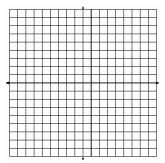
Ready

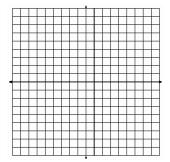

Topic: Solve systems of equations

Solve each system of equations either by graphing, substitution, elimination, or matrix row reduction. Use each method at least once.


1.
$$\begin{cases} 3x + 4 \\ 4x + 1 \end{cases}$$


$$2. \begin{cases} -5x + 12 \\ -2x - 3 \end{cases}$$

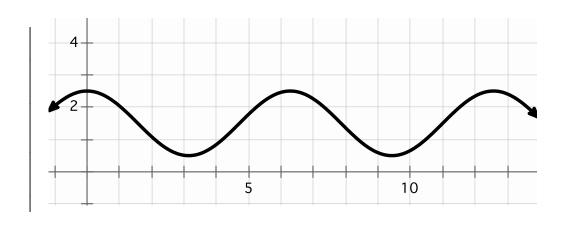

$$3. \begin{cases} \frac{1}{2} x + 2 \\ 2x - 7 \end{cases}$$


4.
$$\begin{cases} -\frac{2}{3}x + 5 \\ -x + 7 \end{cases}$$

5.
$$\begin{cases} x + 5 \\ -x - 3 \end{cases}$$

6.
$$\begin{cases} x - 6 \\ -x - 6 \end{cases}$$

© 2012 Mathematics Vision Project| Mold VP

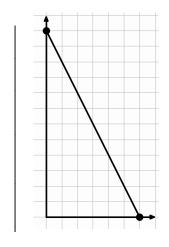

Set

Topic: Connecting context to graphical representations

For each graph create a context, provide independent and dependent variables that will fit the context you choose. Then create a story that describes what is happening on the graph.

7.

Dependent Variable



Independent Variable

Description of context and a story for the graph:

8.

Dependent Variable

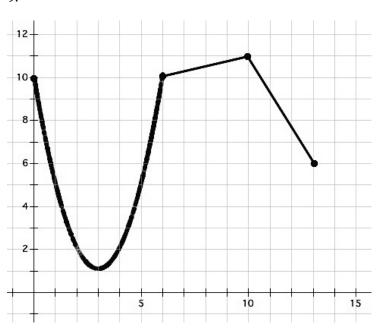
Description of context and a story for the graph:

Independent Variable

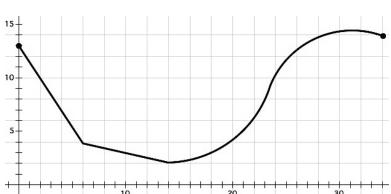
© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

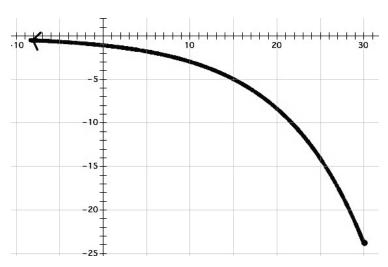

Go

Topic: Describe features of a function from its graphical representation.

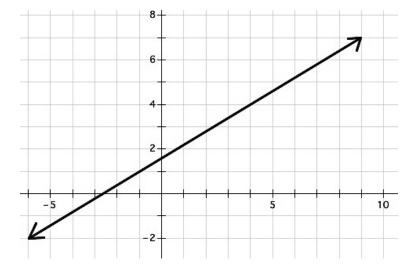

For each graph given provide a description of the function. Be sure to consider the following: decreasing/increasing, min/max, domain/range, etc.

9.

Description of function:


10.

Description of function:


11.

Description of function:

12.

Description of function:

© 2012 Mathematics Vision Project| M V_P

5.7 A Water Function

A Develop Understanding Task

Andrew walked around the water park taking photos of his family with his phone. Later, he discovered his phone was missing. So that others could help him look for his lost phone, he drew a picture that 'retraced his steps' showing where he had walked.

© http://www.flickr.com/photos/battlecreekcvb

If we wanted to determine Andrew's location in the park with respect to time, would his location be a function of time?

Why or why not? Explain.

- 1. Situation A: Sketch a graph of the total distance Andrew walked if he walked at a constant rate the entire time.
- 2. Situation B: Sketch a graph of Andrew's distance from the entrance (his starting point) as a function of time.
- 3. How would the graph of each situation change if Andrew stopped at the slide for a period of time? Would this change whether or not this situation is a function?

© 2012 Mathematics Vision Project | M ${f V}$ P

5.7 A Water Function – Teacher Notes

A Solidify Understanding Task

Purpose: The purpose of this task is to solidify the definition of function. Students examine the relationship between the elements of the domain and how each element within a domain has exactly one corresponding element in the range. Students should recognize that the domain can be restricted and that the result can still be a function. Students should also recognize that a relationship is still a function even though two different inputs produce the same output, such as when Andrew is at the same location at two different times in his walk.

Core Standards Focus:

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Launch (Whole Class):

Have students think about the context of the task and make sure they are clear about the path that Andrew takes around the park. Have them read the prompt at the right of the picture of the park and make a conjecture as to whether or not Andrew's location is a function of time before having them work on the task. Ask students to silently write their conjectures and explanations, then have students share their conjectures and explanations. Connect their reasoning to the definition of a function. That is, make sure that the discussion focuses on the issue that at any given time Andrew is at a single location, which implies that "for every element of the domain there is exactly one element of the range".

Explore (Small Group):

During the exploration students will examine multiple function relationships that arise from the same context. In this case, "total distance traveled" as a function of "time walking"; and "distance from a point" as a function of "time walking". Although the graphs of these two functions will be different, look for students who show the horizontal line segments as a common feature in each of their graphs for the interval of time when Andrew is standing still next to the slide. As you are monitoring student work, ask how they are making decisions about the features of their functions such as where the graphs are increasing or decreasing, where the graphs have maxima and minima, what the domain and range represent and what restrictions are created by the situation, and what the intercepts of the graph represent in the context.

Discuss (Whole Class):

In the discussion focus on the key issues described in the explore stage of this task. Have students share how they made their decisions about these key features of their functions.

Conclude the discussion by refocusing on the definition of a function and how each point on the graph has meaning in the context.

Aligned Ready, Set, Go: Features 5.7

Ready, Set, Go!

© http://www.flickr.com/photos/battlecreekcvb

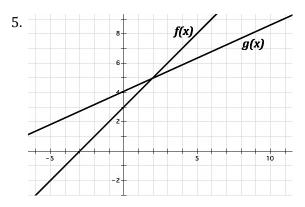
Readv

Topic: Mathematical comparisons

Use the given comparison statements to answer the questions.

- 1. 3 out of 5 students prefer playing football to playing basketball.
 - a. What percent of students prefer playing football?
 - b. What percent of students prefer playing basketball?
- 2. The ratio of student wearing yellow to students not wearing yellow is 3 to 7.
 - a. What fraction of students have on yellow?
 - b. What percent of students don't have on yellow?
- 3. Of the students at school, 40% attended the basketball game.
 - a. What fraction of the students attended the basketball game?
 - b. How many times more students did not attend the basketball game?
- 4. 1000 students ride buses to school while 600 walk or carpool.
 - a. What fraction of students ride the bus?
 - b. How many more students ride the bus than walk or carpool?
 - c. What percent of students walk or carpool?

© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

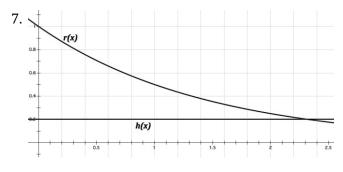

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

Features of Functions 5.7

Set

Topic: Comparing functions from different representations

Use the given representation of the functions to answer the questions.

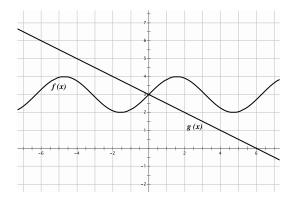


- a. Where does f(x) = g(x)?
- b. What is f(4) + g(4)?
- c. What is g(-2) f(-2)?
- d. On what interval is g(x) > f(x)?
- e. Sketch f(x) + g(x) on the graph provided.

6. The functions a(x) and b(x) are defined in the table below. Each function is a set of exactly five ordered pairs.

X	a(x)	b(x)
-3	1	-1
-1	7	-5
0	3	-10
2	8	2
7	3	3

- a. What is a(-3)+b(-3)?
- b. What is a(-1) b(-1)?
- c. What is a(0) + b(0)?
- d. Add two columns to the table and provided a(x) + b(x) in one and a(x) b(x) in the other.


- a. Where is r(x) > h(x)?
- b. What is r(1) h(1)?
- c. What is r(0) + h(0)?
- d. Create an explicit rule for r(x) and for h(x).
- e. Sketch r(x) h(x) on the graph.

© 2012 Mathematics Vision Project| Mold VP

Features of Functions 5.7

8.

- a. Where does f(x) = g(x)?
- b. What is f(4) + g(4)?
- c. What is g(-2) f(-2)?
- d. On what interval is g(x) > f(x)?
- e. Sketch f(x) g(x) on the graph provided.

Go

Topic: Solving equations for a specified variable. Literal equations.

Rewrite each equation in slope-intercept form (y = mx+b).

9.
$$12x + 3y = 6$$

10.
$$8x + y = 5$$

11.
$$y - 5 = -3(x + 2)$$

12.
$$9x - y = 7$$

13.
$$y - 9x = 4(x - 2)$$
 14. $16x = 20 + 8y$

$$14.16x = 20 + 8y$$

Write an explicit function for the linear function that goes through the given point with the given slope simplified into slope-intercept form.

15.
$$m = 3, (-1, 2)$$

16.
$$m = -5$$
, (3, 4)

16. m = -5, (3, 4) 17. m =
$$\frac{3}{4}$$
, (-4, 2)

© 2012 Mathematics Vision Project| Mold VP

5.8 To Function or Not To Function

A Practice Understanding Task

Determine if the following relationships are functions and then justify your reasoning.

1.A person's name versus their	2. A person's social security	3. The cost of gas versus the
social security number.	number versus their name.	amount of gas pumped.
4. { (3,6), (4, 10), (8,12), (4, 10)}	5. The temperature in degrees Fahrenheit with respect to the time of day.	6. distance days 6 2 10 4 6 5 9 8
7. The area of a circle as it relates to the radius.	8. 3 5 5 7 7 7	9. The radius of a cylinder is dependent on the volume.
10. The size of the radius of a circle dependent on the area.	11. Students letter grade dependent on the percent earned.	12. The length of fence needed with respect to the amount of area to be enclosed.
13. The explicit formula for the recursive situation below: f(1) = 3 and f(n + 1) = f(n) + 4	14. If x is a rational number, then f(x) = 1 If x is an irrational number, then f(x) = 0	15. The national debt with respect to time.

© 2012 Mathematics Vision Project | M V_{P}

In partnership with the Utah State Office of Education

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

5.8 To Function or Not to Function – Teacher Notes

A Practice Understanding Task

Special Note to Teachers: (only if needed)

Purpose: This task is designed for students to practice their understanding of function. After reviewing various naming conventions of function ("versus", "with respect to", "over", "dependent on"), students are to determine whether or not each situation is a function, then justify their answer.

Core Standards Focus:

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers

Related Standards: A.REI.10 and interpreting function (IF) standards

Launch (Whole Class):

Begin this task by going over conventions for determining the input and output of relationships. After going over naming conventions, students should be able to get started on this task without additional support, since they are practicing their understanding of function. This would be a good task to have students do in pairs while making sure each student is responsible for communicating their explanations for each problem in writing.

Explore (Small Group):

As you monitor, be sure students are using appropriate academic vocabulary as they explain to their partner whether or not each relationship is a function.

Make note of the areas where students are struggling to highlight these misconceptions in the whole group discussion.

Discuss (Whole Class):

Since this is a Practice Task, the discussion should include going over problems that seem to be common issues as well as problems that drive home the standards. To start the whole group

© 2012 Mathematics Vision Project | Mold VP

discussion, choose a student to go over all of the features of one of the graphs to make sure the proper vocabulary and corresponding features are shown. Use this example to then go over features that are still confusing for students.

The goal of this whole group discussion is that ALL students can interpret key features of graphs and tables and determine the domain of a function.

Aligned Ready, Set, Go: Features 5.8

Ready, Set, Go!

© www.flickr.com/photos/jmsmith000

Ready

Topic: Determine domain and range, and whether a relation is a function or not a function.

Determine if each set of ordered pairs is a function or not then state the domain and range.

Function: Yes / No

Domain:

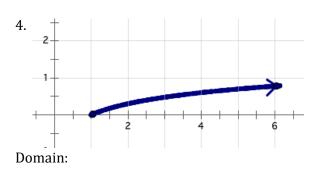
Range:

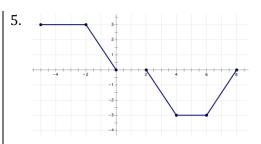
$$2.\{(9,2),(0,4),(4,0),(5,3),(2,7),(0,-3),(3,-1)\}$$

Function: Yes / No

Domain:

Range:


$$3.\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9)\}$$


Function: Yes / No

Domain:

Range:

For the representation of the function given determine the domain and range.

Domain:

Range:

Range:

© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

In partnership with the Utah State Office of Education

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

6.	f	(x)	= ۱	-2x	+	7
υ.	, ,	n.	, —	41	- 1	•

7.
$$g(x) = 3(5)^x$$

8. The elements in the table define the entirety of the

function.

Domain:

Range:

Domain:

Range:

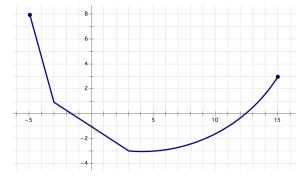
Domain:

Range:

X	h(x)
1	9
2	98
3	987
4	9876

Set

Topic: Determine whether or not the relationship is a function.


Determine if the relationship presented is a function or not and provide a justification.

- 9. The distance a person is from the ground related to time as they ride a Ferris Wheel.
- 10. The amount of daylight during a day throughout the calendar year.
- 11. The value of a Volkswagen Bug convertible from time of first purchase in 1978 to now.
- 12. A person's name and their phone number.
- 13. The stadium in which a football player is playing related to the outcome of the game.

Go

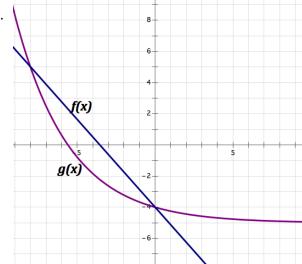
Topic: Determining features of functions and finding solutions using functions.

14. For the graph given below provide a description of the function. Be sure to consider the following: decreasing/increasing, min/max, domain/range, etc.

© 2012 Mathematics Vision Project| Mold VP

41

Features of Functions 5.8


15. For the given situation use the given function to find and interpret solutions.

Hope has been tracking the progress of her family as they travel across the country during their vacation and she has created a function, d(t)= 78t to model the progress they are making.

- a. What would Hope be attempting to find if she writes "d(4) = 78(4)"?
- b. What would d(t) = 450 mean in this situation?
- c. What would d(3.5) mean in this situation?
- d. How could Hope use the function to find the time it would take to travel 800 miles?

Use the given representation of the functions to answer the questions.

16.

- a. Where does f(x) = g(x)?
- b. What is g(0) + f(0)?
- c. On what interval(s) is g(x) > f(x)?
- d. What is g(-8) + f(-8)?

© 2012 Mathematics Vision Project| Mold VP

5.9 Match That Function

A Practice Understanding Task

Welcome to Match That Function! To play, sort the deck of cards into sets by grouping cards together that describe a specific relationship. Each set is supposed to have four cards; however, one card is missing from every set. After you have sorted the cards into ten sets, create a fourth card for each set that would complete the set. Be sure to use a different representation than what is provided.

5.9 Match That Function – Teacher Notes

A Practice Understanding Task

Purpose: This task provides opportunities for students to practice grouping

Core Standards Focus:

F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for $n \ge 1$.

F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★*

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \bigstar

Related Standards: A.REI.10, A.CED.2

Launch (Whole Class):

Read through the scenario and make sure students understand the goal of this task. Distribute a deck of cards to each small group (cards are on next page and need to be cut out before class). Be sure the cards are mixed up before passing them out.

Explore (Small Group): Students should organize cards so that each set of three cards all describe the exact same relationship. If students struggle with organizing the cards, you might suggest they sort them into groups that make sense to them first, then try to match up sets. For example, instead

© 2012 Mathematics Vision Project | M $oldsymbol{V}$ P

of going for finding an exact match, students may wish to first sort cards based on the type of function first, and then narrow down into specific sets. Remind students that each set is missing a card and that they are to complete the set with a card that could be part of the set. As you monitor, look for problems that would be good to discuss during the whole group discussion.

Discuss (Whole Class):

In the discussion focus on the key issues described in the explore stage of this task. Have students share how they made their decisions about grouping sets.

Conclude the discussion by debriefing characteristics of linear and exponential functions as well as features of functions in general.

Aligned Ready, Set, Go: Features 5.9

Context or feature	Table/context/equation	Graph or equation
The domain of this function is all reals. The slope, or rate of change for this function is -2. This function has y-intercept at (0,-3).	A continuous function, including the following points. x 1 2 3 4 y -5 -7 -9 -11	10 y
The domain of this function is from [0,24]. This function increases to it's maximum value, then decreases to the same value as the y-intercept.	The temperature in San Diego in one day.	12
An arithmetic sequence whose domain is whole numbers. My next term is four more than the current term.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(1) = 3 and f(n + 1) = f(n) + 4
This function is always decreasing at a constant rate and has a y-intercept at (0, -3).	f(x) = 2x - 3	10 T T T T T T T T T T T T T T T T T T T
This function is always increasing and has a domain of whole numbers. My next term is four times the amount of the current term.	3, 12, 48, 172,	f(1) = 3 and f(n + 1) = 4f(n)

Miguel earns \$10 each week during the summer to mow the neighbor's lawn.	x 1 2 3 4 f(x) 10 20 30 40	g(x)=10x
This function has a maximum value of 80 and a minimum value of 10.	This function represents the height off the ground of a rider on a Ferris wheel as they make two complete rotations on the ride.	150 °
I bought a car four years ago. Each year, the value is 60% of the value it was a year ago.	$g(x) = 8,000(0.6)^x$	0.5 [0.3]
This function increases, then remains constant, then decreases. The y-intercept is (0,0) and the range is from [0, 10].	This function represents distance versus time: Rashid walked to the store at a constant rate, bought groceries and then walked home at the same constant rate.	155 Y
A geometric sequence whose domain is whole numbers. My next term is one half of the current term.		f(1) = 10 $f(n + 1) = \frac{1}{2}f(n)$

43

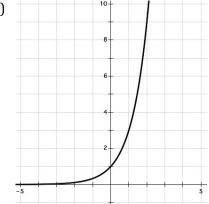
Ready, Set, Go!

Ready

Topic: Find the output or input based on what is given.

For each function find the desired solutions.

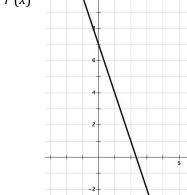
$$1.h(t) = 2t - 5$$


a.
$$h(-4) =$$

b.
$$h(t) = 23, t = ____$$

c.
$$h(13) =$$

a.
$$h(-4) =$$
 b. $h(t) = 23, t =$ c. $h(13) =$ d. $h(t) = -33, t =$


a.
$$g(2) =$$

b.
$$g(x) = 3$$
, $x = _____$

c.
$$g(0) = ____$$

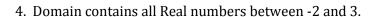
d. What is the explicit rule for g(x)

3.
$$r(x)$$

a.
$$r(-1) =$$

b.
$$r(x) = 4$$
, $x = ____$

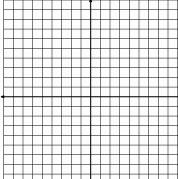
c.
$$r(2) =$$


d. What is the explicit rule for r(x)

Features of Functions 5.9

Set

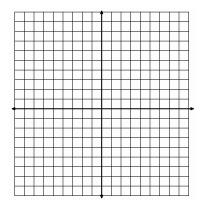
Topic: Describing the key features of functions and creating a representation of a function given the key features.


Use the given description of several of the key features of the function to sketch a possible graph of the function.

Range contains all Real numbers between 3 and 7.

The function is increasing from -2 to 0 and decreasing after 0.

The function is not continuous at every point.

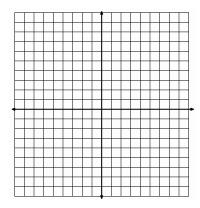


5. The function has a minimum at -5.

The function has a maximum at 8.

The function has two intervals on which it is decreasing and one interval on which it is increasing.

The Domain of the functions contains all Real numbers from 1 to 9.

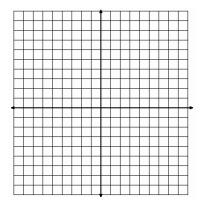


6. This function is not continuous anywhere.

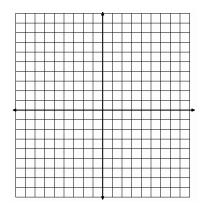
The function contains only seven elements in its domain.

The values of the domain are between -10 and 2.

The values of the range are between -1 and 1.



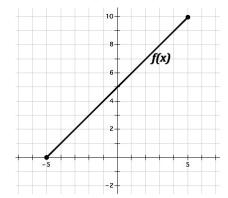
© 2012 Mathematics Vision Project| M ${f V}$ P


7. The function has three intervals on which its slope is zero.

The function has a maximum and a minimum.

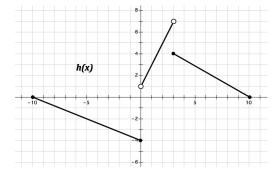
8. The domain of the function is [-5, \clubsuit)

The range of the function is [0, +]



Go

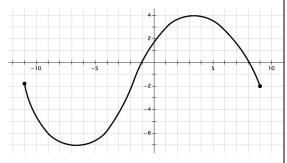
Topic: Determine the following for each function: domain, range, discrete, continuous, increasing, decreasing, etc.


Given the representation of the function(s) provided determine the domain, range, and whether the function is discrete, continuous, increasing, decreasing, etc.

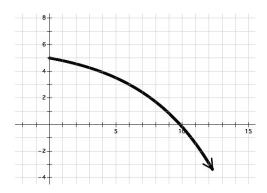
9.

Description of Function:

10.


Description of Function:

© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P



Features of Functions **5.9**

11.

12.

Description of Function:

Description of Function:

13.
$$f(0) = 2, f(n+1) = 3(f(n))$$

Description of Function:

14.
$$g(x) = -9 + 4x$$

Description of Function:

15.
$$f(x) = |x|$$

Description of Function: